The National Ignition Facility: Ushering in a new age for high energy density science

The National Ignition Facility (NIF) [E. I. Moses, J. Phys.: Conf. Ser.112, 012003 (2008); https://lasers.llnl.gov/], completed in March 2009, is the highest energy laser ever constructed. The high temperatures and densities achievable at NIF will enable a number of experiments in inertial confinement fusion and stockpile stewardship, as well as access to new regimes in a variety of experiments relevant to x-ray astronomy, laser-plasma interactions, hydrodynamic instabilities, nuclear astrophysics, and planetary science. The experiments will impact research on black holes and other accreting objects, the understanding of stellar evolution and explosions, nuclear reactions in dense plasmas relevant to stellar nucleosynthesis, properties of warm dense matter in planetary interiors, molecular cloud dynamics and star formation, and fusion energy generation.

[1]  Stewart,et al.  Spectroscopic absorption measurements of an iron plasma. , 1992, Physical review letters.

[2]  Michael D. Perry,et al.  Ignition and high gain with ultrapowerful lasers , 1994 .

[3]  J. Lattanzio,et al.  Deep Mixing of 3He: Reconciling Big Bang and Stellar Nucleosynthesis , 2006, Science.

[4]  Phase separation in giant planets: inhomogeneous evolution of Saturn , 2003, astro-ph/0305031.

[5]  S. Skupsky,et al.  Progress in direct-drive inertial confinement fusion , 2004 .

[6]  Non-spherical core collapse supernovae - II. The late-time evolution of globally anisotropic neutrino-driven explosions and their implications for SN 1987 A , 2005, astro-ph/0511369.

[7]  F. Käppeler,et al.  NEUTRON CROSS SECTIONS FOR NUCLEOSYNTHESIS STUDIES , 2000 .

[8]  Swain,et al.  Subnanosecond x-ray diffraction from laser-shocked crystals. , 1989, Physical review. B, Condensed matter.

[9]  John A. Caird,et al.  An overview of LLNL high-energy short-pulse technology for advanced radiography of laser fusion experiments , 2004 .

[10]  Plasma diagnostics for x-ray driven foils at Z , 2001 .

[11]  G. Wasserburg,et al.  Nucleosynthesis in asymptotic giant branch stars: Relevance for galactic enrichment and solar system formation , 1999 .

[12]  D. Meyerhofer,et al.  Extended x-ray absorption fine structure measurement of phase transformation in iron shocked by nanosecond laser , 2005 .

[13]  B. Woods,et al.  Performance of large-aperture optical switches for high-energy inertial-confinement fusion lasers. , 1995, Applied optics.

[14]  M. Knudson,et al.  Use of a wave reverberation technique to infer the density compression of shocked liquid deuterium to 75 GPa. , 2003, Physical review letters.

[15]  David A. Young,et al.  Phase Diagrams of the Elements , 1991 .

[16]  Rogers,et al.  Absorption measurements demonstrating the importance of Delta n=0 transitions in the opacity of iron. , 1992, Physical review letters.

[17]  A. Mengoni,et al.  Stellar neutron capture cross section of the unstable s-process branching point {sup 151}Sm , 2006 .

[18]  Gilbert W. Collins,et al.  Hugoniot data for helium in the ionization regime. , 2008, Physical review letters.

[19]  Edward I. Moses,et al.  Ignition on the National Ignition Facility , 2007 .

[20]  Stanford,et al.  Small-scale Interaction of Turbulence with Thermonuclear Flames in Type Ia Supernovae , 1999, astro-ph/9905088.

[21]  Thomas P. Russell,et al.  Shock Compression of Condensed Matter , 2006 .

[22]  J. Lindl Development of the indirect‐drive approach to inertial confinement fusion and the target physics basis for ignition and gain , 1995 .

[23]  R. P. Drake,et al.  Experimental astrophysics with high power lasers and Z pinches , 2004 .

[24]  J Ebrardt,et al.  LMJ project status , 2008 .

[25]  J. Stamper,et al.  Laboratory laser-produced astrophysical-like plasmas , 1989 .

[26]  Johansson,et al.  Theoretical predictions of structural phase transitions in Cr, Mo, and W. , 1994, Physical review. B, Condensed matter.

[27]  E. Salpeter,et al.  The dynamics and helium distribution in hydrogen-helium fluid planets , 1977 .

[28]  R. Johnson,et al.  Trident: a versatile high-power Nd:glass laser facility for inertial confinement fusion experiments. , 1995, Applied optics.

[29]  Gilbert W. Collins,et al.  Shock-induced transformation of liquid deuterium into a metallic fluid , 2000, Physical review letters.

[30]  B. Remington,et al.  Richtmyer-Meshkov instability with strong radiatively driven shocks , 1996 .

[31]  J. D. Moody,et al.  Prospects for high-gain, high yield National Ignition Facility targets driven by 2ω (green) light , 2004 .

[32]  H. Takabe Astrophysics with Intense and Ultra-Intense Lasers “Laser Astrophysics” , 2001 .

[33]  R. London,et al.  Supernova hydrodynamics experiments on the Nova laser , 1997 .

[34]  First measurement of the 14N(p,γ)15O cross section down to 70 keV , 2006, nucl-ex/0602012.

[35]  D Besnard,et al.  Fusion with the megajoule laser , 2008 .

[36]  Barukh Yaakobi,et al.  Rayleigh-Taylor Growth Stabilization in Direct-Drive Plastic Targets at Laser Intensities of ̃1×10 15 W/cm 2 , 2008 .

[37]  Mike Dunne,et al.  A high-power laser fusion facility for Europe , 2006 .

[38]  Erik Brambrink,et al.  High-resolution 17-75 keV backlighters for high energy density experiments , 2008 .

[39]  M. J. Edwards,et al.  High pressure, quasi-isentropic compression experiments on the Omega laser , 2006 .

[40]  Peter A. Amendt,et al.  Core temperature and density profile measurements in inertial confinement fusion implosions , 2008 .

[41]  J. D. Kilkenny,et al.  Single‐mode and multimode Rayleigh–Taylor experiments on Nova , 1995 .

[42]  G. Rochau,et al.  Iron-plasma transmission measurements at temperatures above 150 eV. , 2007, Physical review letters.

[43]  J. Maund,et al.  The Shape of Cas A , 2007, 0711.3925.

[44]  Cottam,et al.  High-Resolution Spectroscopy of the X-Ray-photoionized Wind in Cygnus X-3 with the Chandra High-Energy Transmission Grating Spectrometer. , 2000, The Astrophysical journal.

[45]  Howard A. Scott,et al.  Cretin—a radiative transfer capability for laboratory plasmas , 2001 .

[46]  J. Pollack,et al.  The effect of dense cores on the structure and evolution of Jupiter and Saturn , 1980 .

[47]  D. Meyerhofer,et al.  EXAFS measurement of iron bcc-to-hcp phase transformation in nanosecond-laser shocks. , 2005, Physical review letters.

[48]  Justin S. Wark,et al.  Novel measurements of high‐dynamic crystal strength by picosecond x‐ray diffraction , 1992 .

[49]  J. Kilkenny,et al.  NONLINEAR RAYLEIGH-TAYLOR EVOLUTION OF A THREE-DIMENSIONAL MULTIMODE PERTURBATION , 1998 .

[50]  Cfa,et al.  THE STRUCTURE AND X-RAY RECOMBINATION EMISSION OF A CENTRALLY ILLUMINATED ACCRETION DISK ATMOSPHERE AND CORONA , 2002, astro-ph/0208488.

[51]  Gilbert W. Collins,et al.  Direct observation of the alpha-epsilon transition in shock-compressed iron via nanosecond x-ray diffraction. , 2005, Physical review letters.

[52]  J. D. Salmonson,et al.  Update on Specifications for NIF Ignition Targets, and Their Rollup into an Error Budget , 2005 .

[53]  Stephen D. Jacobs,et al.  OMEGA EP high-energy petawatt laser: progress and prospects , 2008 .

[54]  C. Tout,et al.  Stellar evolution models for Z = 0.0001 to 0.03 (Pols+ 1998) , 1998 .

[55]  Hiroshi Azechi,et al.  The FIREX Program on the Way to Inertial Fusion Energy , 2008 .

[56]  Johansson,et al.  Influence of pseudocore valence-band hybridization on the crystal-structure phase stabilities of transition metals under extreme compressions. , 1994, Physical review. B, Condensed matter.

[57]  K. Takahashi,et al.  The s-process branching at Sm-151 , 1984 .

[58]  Duane A. Liedahl,et al.  Photoionization-Driven X-Ray Line Emission in Cygnus X-3 , 1996 .

[59]  J. Lindl,et al.  Inertial Confinement Fusion: The Quest for Ignition and Energy Gain Using Indirect Drive , 1998 .

[60]  D. Gautier,et al.  The helium abundance of Saturn from Voyager measurements , 1984 .

[61]  Michael H. Key,et al.  Status of and prospects for the fast ignition inertial fusion concepta) , 2007 .

[62]  R. P. Drake,et al.  Similarity Criteria for the Laboratory Simulation of Supernova Hydrodynamics , 1999 .

[63]  L. P. Mix,et al.  Charge-state distribution and Doppler effect in an expanding photoionized plasma. , 2004, Physical review letters.

[64]  S. Sutton,et al.  National Ignition Facility laser performance status. , 2007, Applied optics.

[65]  M. Decroisette,et al.  Laser megajoule project and impact on the inertial fusion program , 1999 .

[66]  D. K. Bradley,et al.  High pressures generated by laser driven shocks: applications to planetary physics , 2004 .

[67]  T. S. Perry,et al.  Opacity Measurements in a Hot Dense Medium , 1991, Physical review letters.

[68]  S. Rose High-power laser-produced plasmas and astrophysics , 1991 .

[69]  Jon Eggert,et al.  Quasi-isentropic material property studies at extreme pressures: from Omega to NIF , 2007 .

[70]  F. Käppeler,et al.  Stellar neutron capture cross sections of the Yb isotopes , 2000 .

[71]  J Edwards,et al.  Laser-driven plasma loader for shockless compression and acceleration of samples in the solid state. , 2004, Physical review letters.

[72]  D. Meyerhofer,et al.  Extended x-ray absorption fine structure measurements of laser shocks in Ti and V and phase transformation in Ti , 2004 .

[73]  R. Town,et al.  Extended x-ray absorption fine-structure experiments with a laser- imploded target as a radiation source , 2003 .

[74]  A. Renzini,et al.  Tests of evolutionary sequences using color-magnitude diagrams of globular clusters , 1988 .

[75]  J. Lattanzio,et al.  Three-dimensional Numerical Experimentation on the Core Helium Flash of Low-Mass Red Giants , 2005, astro-ph/0512049.

[76]  The bottleneck of CNO burning and the age of Globular Clusters , 2004, astro-ph/0403071.

[77]  Richard N. Boyd,et al.  An Introduction to Nuclear Astrophysics , 2008 .

[78]  D. Meyerhofer,et al.  Extended X-ray absorption fine structure measurements of laser-shocked V and Ti and crystal phase transformation in Ti. , 2004, Physical review letters.

[79]  H. Ford,et al.  Evidence for a Massive Black Hole in the Active Galaxy NGC 4261 from Hubble Space Telescope Images and Spectra , 1996 .

[80]  Two-dimensional Hydrodynamics of Pre-Core Collapse: Oxygen Shell Burning , 1997, astro-ph/9702239.

[81]  J. Pollack,et al.  A calculation of Saturn's gravitational contraction history , 1977 .

[82]  Haan Onset of nonlinear saturation for Rayleigh-Taylor growth in the presence of a full spectrum of modes. , 1989, Physical review. A, General physics.

[83]  D. SaumonT. Guillot Shock Compression of Deuterium and the Interiors of Jupiter and Saturn , 2004 .

[84]  Kunioki Mima,et al.  Impact of Fast Ignition on Laser Fusion Energy Development , 2008 .

[85]  D. Gautier,et al.  Saturn Helium Abundance: A Reanalysis of Voyager Measurements , 2000 .

[86]  W. Däppen The equation of state for the solar interior , 2006 .

[87]  O. Landen,et al.  Development of Compton radiography using high‐Z backlighters produced by ultra‐intense lasers , 2007 .

[88]  Xiaodong Yuan,et al.  Status of the SG-III solid-state laser facility , 2008 .

[89]  S. Rose,et al.  Calculation of photoionized plasmas with an average-atom model , 2004 .

[90]  R. G. Adams,et al.  Pulsed-power-driven high energy density physics and inertial confinement fusion research , 2004 .

[91]  D. Kalantar,et al.  Analysis of the x-ray diffraction signal for the {alpha}-{epsilon} transition in shock-compressed iron: Simulation and experiment , 2006 .

[92]  K. Takahashi,et al.  Beta-decay rates of highly ionized heavy atoms in stellar interiors , 1987 .

[93]  THE CHEMICAL COMPOSITION AND EQUATION OF STATE OF THE SUN INFERRED FROM SEISMIC MODELS THROUGH AN INVERSION PROCEDURE , 2005 .

[94]  J. Knauer,et al.  Inertial confinement fusion experiments with OMEGA-A 30-kJ, 60-beam UV laser , 1999 .

[95]  O. Landen,et al.  The physics basis for ignition using indirect-drive targets on the National Ignition Facility , 2004 .

[96]  Colin N. Danson,et al.  Electronic conduction in shock-compressed water , 2004 .

[97]  Jonathan D. Zuegel,et al.  High-energy petawatt capability for the omega laser , 2005 .

[98]  S. Lubow,et al.  Standard Solar Models and the Uncertainties in Predicted Capture Rates of Solar Neutrinos , 1982 .

[99]  Bruce A. Remington,et al.  The evolution of high-energy-density physics: From nuclear testing to the superlasers , 1997 .

[100]  R. P. Drake Laboratory experiments to simulate the hydrodynamics of supernova remnants and supernovae , 1999 .

[101]  E. Moses,et al.  The National Ignition Facility , 2004 .