Investigating the Prospect of Adopting Artificial Intelligence Techniques from Transport Operators in Greece

[1]  Thomas A. Runkler,et al.  Rescheduling and optimization of logistic processes using GA and ACO , 2008, Eng. Appl. Artif. Intell..

[2]  Daniel E. O'Leary,et al.  Artificial Intelligence and Big Data , 2013, IEEE Intelligent Systems.

[3]  Wei Fan,et al.  Artificial neural network travel time prediction model for buses using only GPS data , 2014 .

[4]  Jörg Becker,et al.  Developing Maturity Models for IT Management , 2009, Bus. Inf. Syst. Eng..

[5]  I. Twinn,et al.  How Artificial Intelligence is Making Transport Safer, Cleaner, More Reliable and Efficient in Emerging Markets , 2019 .

[6]  Nils J. Nilsson,et al.  Principles of Artificial Intelligence , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Carlos Alberto Brebbia,et al.  Sustainable Development and Planning V , 2011 .

[8]  Rong Wen,et al.  Adaptive spatio-temporal mining for route planning and travel time estimation , 2017, 2017 IEEE International Conference on Big Data (Big Data).

[9]  Romain Giot,et al.  Predicting bikeshare system usage up to one day ahead , 2014, 2014 IEEE Symposium on Computational Intelligence in Vehicles and Transportation Systems (CIVTS).

[10]  Qiang Yang,et al.  Ridesharing car detection by transfer learning , 2019, Artif. Intell..

[11]  Longbo Huang,et al.  A Deep Reinforcement Learning Framework for Rebalancing Dockless Bike Sharing Systems , 2018, AAAI.

[12]  Chuntian Cheng,et al.  A Parallel Ant Colony Algorithm for Bus Network Optimization , 2007, Comput. Aided Civ. Infrastructure Eng..

[13]  Jun Wang,et al.  Efficient Ridesharing Order Dispatching with Mean Field Multi-Agent Reinforcement Learning , 2019, WWW.

[14]  Dan W. Patterson,et al.  Introduction to artificial intelligence and expert systems , 1990 .

[15]  Jieping Ye,et al.  Deep Multi-View Spatial-Temporal Network for Taxi Demand Prediction , 2018, AAAI.