A micromechanical model of cyclic deformation and fatigue-crack nucleation in f.c.c. single crystals

We have developed a micromechanical finite-element model of fatigue-crack initiation in nominally defect-free pure f.c.c. metals. The scale of observation envisioned is that of a single persistent slip band (PSB) intersecting the free surface of a single crystal. The nucleation event is identified with the formation of a sharp surface crack, whose subsequent growth obeys the laws of fracture mechanics. Basic building blocks of the theory are: a model of cyclic plasticity tailored to PSBs which accounts for the Bauschinger effect, PSB elongation due to pair annihilation, and vacancy generation; and a model of vacancy diffusion which accounts for pipe diffusion and the surface motion resulting from the outward flux of vacancies. Our numerical simulations show that this flux causes the surface to recede, which contributes to the formation of grooves at the PSB/matrix interface. Eventually, those grooves sharpen to form a mathematically sharp crack. The model thus provides a quantitative prediction of the number of cycles required for the nucleation of a fatigue crack.

[1]  C. Feltner A debris mechanism of cyclic strain hardening for F.C.C. metals , 1965 .

[2]  R. Brook,et al.  Influence of residual elements on the fracture of an iron-20% cobalt-5% molybdenum alloy , 1975 .

[3]  S. Suresh Fatigue of materials , 1991 .

[4]  James R. Rice,et al.  Strain localization in ductile single crystals , 1977 .

[5]  André Zaoui,et al.  Multislip in f.c.c. crystals a theoretical approach compared with experimental data , 1982 .

[6]  P. Forsyth,et al.  Exudation of Material from Slip Bands at the Surface of Fatigued Crystals of an Aluminium–Copper Alloy , 1953, Nature.

[7]  U. F. Kocks A statistical theory of flow stress and work-hardening , 1966 .

[8]  M. Makin,et al.  DISLOCATION MOVEMENT THROUGH RANDOM ARRAYS OF OBSTACLES , 1966 .

[9]  A. Korbel,et al.  The temperature dependence of the saturation stress and dislocation substructure in fatigued copper single crystals , 1980 .

[10]  K. S. Havner,et al.  On the mechanics of crystalline solids , 1973 .

[11]  U. Gösele,et al.  A model of extrusions and intrusions in fatigued metals I. Point-defect production and the growth of extrusions , 1981 .

[12]  J. Rice Inelastic constitutive relations for solids: An internal-variable theory and its application to metal plasticity , 1971 .

[13]  P. Franciosi,et al.  The concepts of latent hardening and strain hardening in metallic single crystals , 1985 .

[14]  P. Franciosi,et al.  Latent hardening in copper and aluminium single crystals , 1980 .

[15]  C. S. Hartley,et al.  Constitutive Equations in Plasticity , 1977 .

[16]  J. Grosskreutz,et al.  Mechanisms of fatigue hardening in copper single crystals , 1969 .

[17]  R. M. Broudy,et al.  Dislocations and Mechanical Properties of Crystals. , 1958 .

[18]  P. J. Woods Low-amplitude fatigue of copper and copper-5 at. % aluminium single crystals , 1973 .

[19]  P. Franciosi Glide mechanisms in b.c.c. crystals: An investigation of the case of α-iron through multislip and latent hardening tests , 1983 .

[20]  A. Howie,et al.  Early stages of fatigue in copper single crystals , 1969 .

[21]  H. Wilsdorf,et al.  Microcrack nucleation and fracture in silver crystals , 1974 .

[22]  Campbell Laird,et al.  Overview of fatigue behavior in copper single crystals—II. Population, size distribution and growth kinetics of Stage I cracks for tests at constant strain amplitude , 1989 .

[23]  K. Differt,et al.  A model of extrusions and intrusions in fatigued metals. II: Surface roughening by random irreversible slip , 1986 .

[24]  L. M. Brown,et al.  Vacancy dipoles in fatigued copper , 1976 .

[25]  L. M. Brown,et al.  Cyclic hardening of magnesium single crystals , 1978 .

[26]  Campbell Laird,et al.  Overview of fatigue behavior in copper single crystals—I. Surface morphology and stage I crack initiation sites for tests at constant strain amplitude , 1989 .

[27]  G. L’espérance,et al.  An explanation of labyrinth walls in fatigued f.c.c. metals , 1986 .

[28]  P. Neumann,et al.  Quantitative measurement of persistent slip band profiles and crack initiation , 1986 .

[29]  D. Duquette,et al.  The effect of surface dissolution on fatigue deformation and crack nucleation in copper and copper 8% aluminum single crystals , 1978 .

[30]  K. Easterling,et al.  Phase Transformations in Metals and Alloys , 2021 .

[31]  A. Mcevily,et al.  Fatigue slip band formation in silicon-iron , 1965 .

[32]  H. Mughrabi,et al.  The dependence of dislocation microstructure on plastic strain amplitude in cyclically strained copper single crystals , 1984 .

[33]  John Arthur Simmons,et al.  FUNDAMENTAL ASPECTS OF DISLOCATION THEORY. VOLUME II. Conference Held at Gaithersburg, Maryland, April 21--25, 1969. , 1970 .

[34]  Cristian Teodosiu,et al.  Elastic Models of Crystal Defects , 1982 .

[35]  J. Antonopoulos,et al.  Weak-beam study of dislocation structures in fatigued copper , 1976 .

[36]  E. Aifantis,et al.  Dislocation patterning in fatigued metals as a result of dynamical instabilities , 1985 .

[37]  C. Laird,et al.  Strain localization in cyclic deformation of copper single crystals , 1975 .

[38]  R. Pascual,et al.  Low amplitude fatigue of copper single crystals—I. The role of the surface in fatigue failure , 1983 .

[39]  F. Nabarro Dislocations in metallurgy , 1979 .

[40]  J. Jonas,et al.  Strength of metals and alloys , 1985 .

[41]  J. Rice,et al.  Constitutive analysis of elastic-plastic crystals at arbitrary strain , 1972 .