An efficient iterative penalization method using recycled Krylov subspaces and its application to impulsively started flows

Abstract We formulate the penalization problem inside a vortex particle-mesh method as a linear system. This system has to be solved at every wall boundary condition enforcement within a time step. Furthermore, because the underlying problem is a Poisson problem, the solution of this linear system is computationally expensive. For its solution, we here use a recycling iterative solver, rBiCGStab, in order to reduce the number of iterations and therefore decrease the computational cost of the penalization step. For the recycled subspace, we use the orthonormalized previous solutions as only the right hand side changes from the solution at one time to the next. This method is validated against benchmark results: the impulsively started cylinder, with validation at low Reynolds number ( Re = 550 ) and computational savings assessments at moderate Reynolds number ( Re = 9500 ); then on a flat plate benchmark ( Re = 1000 ). By improving the convergence behavior, the approach greatly reduces the computational cost of iterative penalization, at a moderate cost in memory overhead.

[1]  Georges-Henri Cottet,et al.  Advances in direct numerical simulations of 3D wall-bounded flows by Vortex-in-Cell methods , 2004 .

[2]  Petros Koumoutsakos,et al.  Iterative Brinkman penalization for remeshed vortex methods , 2015, J. Comput. Phys..

[3]  Yves Marichal,et al.  Immersed interface interpolation schemes for particle-mesh methods , 2016, J. Comput. Phys..

[4]  R W Hockney,et al.  Computer Simulation Using Particles , 1966 .

[5]  Grégoire Winckelmans,et al.  Combining the vortex-in-cell and parallel fast multipole methods for efficient domain decomposition simulations , 2008, J. Comput. Phys..

[6]  Thomas Gillis,et al.  A 2D immersed interface Vortex Particle-Mesh method , 2019, J. Comput. Phys..

[7]  Michael S. Warren,et al.  Vortex Methods for Direct Numerical Simulation of Three-Dimensional Bluff Body Flows , 2002 .

[8]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[9]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[10]  Philippe Angot,et al.  A penalization method to take into account obstacles in incompressible viscous flows , 1999, Numerische Mathematik.

[11]  Iraj Mortazavi,et al.  Vortex penalization method for bluff body flows , 2015 .

[12]  Diego Rossinelli,et al.  GPU accelerated simulations of bluff body flows using vortex particle methods , 2010, J. Comput. Phys..

[13]  Michael Bergdorf,et al.  Direct numerical simulations of vortex rings at ReΓ = 7500 , 2007, Journal of Fluid Mechanics.

[14]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[15]  Mathieu Coquerelle,et al.  ARTICLE IN PRESS Available online at www.sciencedirect.com Journal of Computational Physics xxx (2008) xxx–xxx , 2022 .

[16]  E. Sturler,et al.  Nested Krylov methods based on GCR , 1996 .

[17]  Georges-Henri Cottet,et al.  A multiresolution remeshed Vortex-In-Cell algorithm using patches , 2011, J. Comput. Phys..

[18]  P. Koumoutsakos,et al.  High-resolution simulations of the flow around an impulsively started cylinder using vortex methods , 1995, Journal of Fluid Mechanics.

[19]  F. Noca,et al.  A COMPARISON OF METHODS FOR EVALUATING TIME-DEPENDENT FLUID DYNAMIC FORCES ON BODIES, USING ONLY VELOCITY FIELDS AND THEIR DERIVATIVES , 1999 .

[20]  P. Sonneveld CGS, A Fast Lanczos-Type Solver for Nonsymmetric Linear systems , 1989 .

[21]  Grégoire Winckelmans,et al.  An immersed interface solver for the 2-D unbounded Poisson equation and its application to potential flow , 2014 .

[22]  Eric de Sturler,et al.  Recycling Krylov subspaces for CFD applications and a new hybrid recycling solver , 2015, J. Comput. Phys..

[23]  Eric de Sturler,et al.  Recycling Krylov Subspaces for Sequences of Linear Systems , 2006, SIAM J. Sci. Comput..

[24]  Alessandro Curioni,et al.  Billion vortex particle direct numerical simulations of aircraft wakes , 2008 .

[25]  Petros Koumoutsakos,et al.  A Fourier-based elliptic solver for vortical flows with periodic and unbounded directions , 2010, J. Comput. Phys..

[26]  H. T. Yang,et al.  Initial flow field over an impulsively started circular cylinder , 1975, Journal of Fluid Mechanics.

[27]  G. Winckelmans,et al.  Vortex methods for high-resolution simulations of viscous flow past bluff bodies of general geometry , 2000 .

[28]  Petros Koumoutsakos,et al.  Vortex Methods: Theory and Practice , 2000 .

[29]  Nicholas K.-R. Kevlahan,et al.  Computation of turbulent flow past an array of cylinders using a spectral method with Brinkman penalization , 2001 .

[30]  Georges-Henri Cottet,et al.  A comparison of spectral and vortex methods in three-dimensional incompressible flows , 2002 .

[31]  C. Lanczos Solution of Systems of Linear Equations by Minimized Iterations1 , 1952 .

[32]  Eric de Sturler,et al.  Recycling BiCGSTAB with an Application to Parametric Model Order Reduction , 2014, SIAM J. Sci. Comput..

[33]  Petros Koumoutsakos,et al.  Simulations of single and multiple swimmers with non-divergence free deforming geometries , 2011, J. Comput. Phys..

[34]  E. Sturler,et al.  Truncation Strategies for Optimal Krylov Subspace Methods , 1999 .

[35]  Ronald B. Morgan,et al.  GMRES WITH DEFLATED , 2008 .