On Hereditarily Indecomposable Banach Spaces

This paper shows that every non-separable hereditarily indecomposable Banach space admits an equivalent strictly convex norm, but its bi–dual can never have such a one; consequently, every non–separable hereditarily indecomposable Banach space has no equivalent locally uniformly convex norm.

[1]  W. T. Gowers,et al.  Lower bounds of tower type for Szemerédi's uniformity lemma , 1997 .

[2]  An infinite Ramsey theorem and some Banach-space dichotomies , 2002, math/0501105.

[3]  T. Gillespie Boundedness Criteria for Boolean Algebras of Projections , 1997 .

[4]  DISJOINTNESS OF OPERATOR RANGES IN BANACH SPACES , 1998 .

[5]  Rajendra Bhatia The work of the fields medallists: 1998 , 1999 .

[6]  S. Argyros,et al.  Interpolating hereditarily indecomposable Banach spaces , 1997, math/9712277.

[7]  W. T. Gowers A Hereditarily Indecomposable Space with an Asymptotic Unconditional Basis , 1995 .

[8]  Examples of improjective operators , 2000 .

[9]  W. T. Gowers A new dichotomy for Banach spaces , 1996 .

[10]  W. T. Gowers,et al.  Lipschitz functions on classical spaces , 1992, Eur. J. Comb..

[11]  A solution of the finite-dimensional homogeneous Banach space problem , 1991 .

[12]  W. T. Gowers An Almost m-wise Independent Random Permutation of the Cube , 1996, Combinatorics, Probability and Computing.

[13]  W. T. Gowers,et al.  The unconditional basic sequence problem , 1992, math/9205204.

[14]  W. T. Gowers,et al.  A new proof of Szemerédi's theorem , 2001 .

[15]  Banach spaces with small spaces of operators , 1994, math/9407209.

[16]  Joram Lindenstrauss,et al.  On nonseparable reflexive Banach spaces , 1966 .

[17]  William Timothy Gowers,et al.  Fourier Analysis and Szemerédi's Theorem , 1998 .

[18]  W. T. Gowers Symmetric block bases of sequences with large average growth , 1990 .

[19]  W. T. Gowers,et al.  Recent Results in the Theory of Infinite-Dimensional Banach Spaces , 1995 .

[20]  F. Räbiger,et al.  C0-groups andC0-semigroups of linear operators on hereditarily indecomposable Banach spaces , 1996 .

[21]  H. Wark A Non‐Separable Reflexive Banach Space on Which there are Few Operators , 2001 .

[22]  Béla Bollobäs THE WORK OP WILLIAM TIMOTHY GOWERS , 1998 .

[23]  W. T. Gowers,et al.  A Banach space not containing ₀,₁ or a reflexive subspace , 1994 .

[24]  Symmetric block bases in finite-dimensional normed spaces , 1989 .

[25]  Banach Spaces with Few Operators , 1998 .

[26]  E. Rodney Canfield On a problem of rota , 1978 .

[27]  W. T. Gowers,et al.  A finite-dimensional normed space with two non-equivalent symmetric bases , 1994 .

[28]  W. T. Gowers,et al.  A New Proof of Szemerédi's Theorem for Arithmetic Progressions of Length Four , 1998 .

[29]  W. T. Gowers,et al.  A NEW PROOF OF SZEMER ´ EDI'S THEOREM , 2001 .

[30]  W. T. Gowers A Solution to the Schroeder‐Bernstein Problem for Banach Spaces , 1996 .

[31]  W. Gowers A Solution to Banach's Hyperplane Problem , 1994 .

[32]  W. T. Gowers Polytope Approximations of the Unit Ball of lpn , 1998 .

[33]  Manuel González,et al.  Operators on quotient indecomposable spaces , 2001, Publicationes Mathematicae Debrecen.