Catalytic dehydration of lactic acid to acrylic acid over sulfate catalysts

The production of acrylates from biomass-originated lactic acid is of extraordinary importance to overcome the increasing worldwide shortage of petroleum. In this work, the catalytic dehydration of lactic acid to acrylic acid was carried out over calcium sulfate catalyst with cupric sulfate and phosphates as promoters. The mass ratio of m(CaSO4)/m(CuSO4)/m(Na2HPO4)/m(KH2PO4) is 150.0:13.8:2.5:1.2. In the dehydration of lactic acid, effects of carrier gas, calcination temperature for catalyst, concentration of lactic acid as well as contact time are discussed in detail. With carbon dioxide as carrier gas, the highest acrylic acid yield of 63.7% is achieved from 26 wt.% lactic acid at 330°C and 88 s contact time. La production des acrylates a partir d'acide lactique issu de biomasse est d'une extreme importance compte tenu du manque croissant de petrole dans le monde. Dans ce travail, la deshydratation catalytique de l'acide lactique en acide acrylique a ete effectuee sur un catalyseur de sulfate de calcium avec du sulfate cuprique et des phosphates comme promoteurs. Les rapports de masse de m(CaSO4), m(CuSO4), m(Na2HPO4), m(KH2PO4) sont de 150,0, 13,8, 2,5 et 1,2, respectivement. Dans la deshydratation de l'acide lactique, les effets du gaz porteur, de la temperature de calcination du catalyseur, de la concentration de l'acide lactique ainsi que du temps de contact sont examines en detail. Avec le dioxyde de carbone comme gaz transporteur, le rendement en acide acrylique le plus eleve obtenu est de 63,7%, a partir d'acide lactique a 26% massique, 330°C et un temps de contact de 88 secondes.

[1]  Lee T. Smith,et al.  Pyrolysis of Lactic Acid Derivatives , 1942 .

[2]  R. Ohnishi,et al.  Recent Survey of Catalysis by Solid Metal Sulfates , 1974 .

[3]  Motonobu Goto,et al.  Hydrothermal conversion of municipal organic waste into resources. , 2004, Bioresource technology.

[4]  Jian-ping Lin,et al.  Evaluation of Catalysts and Optimization of Reaction Conditions for the Dehydration of Methyl Lactate to Acrylates , 2008 .

[5]  Carl T. Lira,et al.  Conversion of lactic acid to acrylic acid in near-critical water , 1993 .

[6]  Dennis J. Miller,et al.  Lactic acid conversion to 2,3-pentanedione and acrylic acid over silica-supported sodium nitrate : Reaction optimization and identification of sodium lactate as the active catalyst , 1997 .

[7]  Barbara Odell,et al.  Hydrothermal reactions of lactic acid catalysed by group: VIII Metal complexes , 1985 .

[8]  Dennis J. Miller,et al.  Catalytic Upgrading of Fermentation‐Derived Organic Acids , 1999, Biotechnology progress.

[9]  Hwa-Won Ryu,et al.  Lactic acid production from agricultural resources as cheap raw materials. , 2005, Bioresource technology.

[10]  Dennis J. Miller,et al.  Formation of 2,3-Pentanedione from Lactic Acid over Supported Phosphate Catalysts , 1994 .

[11]  R. Ohnishi,et al.  Acid Property and Structure of a Solid Metal Sulfate Catalyst. Change in Structure of Nickel Sulfates with Heating1 , 1965 .

[12]  Lee T. Smith,et al.  Methyl Acrylate Production by Pyrolysis of Methyl Acetoxypropionate , 1944 .

[13]  Xin-Gang Li,et al.  Fed-batch fermentation of Lactobacillus lactis for hyper-production of l-lactic acid , 2003, Biotechnology Letters.

[14]  Dennis J. Miller,et al.  Catalysts and supports for conversion of lactic acid to acrylic acid and 2,3-pentanedione , 1995 .

[15]  Makoto Hirata,et al.  Acid-hydrolysis of fish wastes for lactic acid fermentation. , 2006, Bioresource technology.