Quantum-corrected drift-diffusion models for transport in semiconductor devices
暂无分享,去创建一个
Andrea L. Lacaita | Carlo de Falco | Riccardo Sacco | Emilio Gatti | A. Lacaita | R. Sacco | E. Gatti | C. Falco
[1] Andreas Unterreiter,et al. The Stationary Current { VoltageCharacteristics of the Quantum DriftDi usion ModelRen , 1999 .
[2] A. Benvenuti,et al. Self-consistent 2-D model for quantum effects in n-MOS transistors , 1998 .
[3] W. D. Evans,et al. PARTIAL DIFFERENTIAL EQUATIONS , 1941 .
[4] Pierre Degond,et al. A coupled Schrödinger drift-diffusion model for quantum semiconductor device simulations , 2002 .
[5] Thomas Kerkhoven,et al. A proof of convergence of Gummel's algorithm for realistic device geometries , 1986 .
[6] Thomas Kerkhoven,et al. A Spectral Analysis of the Decoupling Algorithm for Semiconductor Simulation , 1988 .
[7] C. Moglestue,et al. Self‐consistent calculation of electron and hole inversion charges at silicon–silicon dioxide interfaces , 1986 .
[8] M. Ancona,et al. Macroscopic physics of the silicon inversion layer. , 1987, Physical review. B, Condensed matter.
[9] Ansgar Jüngel,et al. Quasi-hydrodynamic Semiconductor Equations , 2001 .
[10] W. Hänsch,et al. The drift diffusion equation and its applications in MOSFET modeling , 1991 .
[11] Paola Pietra,et al. Two-dimensional exponential fitting and applications to drift-diffusion models , 1989 .
[12] C. Schmeiser,et al. Semiconductor equations , 1990 .
[13] Stefano Micheletti,et al. A Discretization Scheme for an Extended Drift-Diffusion Model Including Trap-Assisted Phenomena , 2000 .
[14] René Pinnau,et al. Uniform Convergence of an Exponentially Fitted Scheme for the Quantum Drift Diffusion Model , 2004, SIAM J. Numer. Anal..
[15] 30 nm MOSFET development based on processes for nanotechnology , 2002, ICONIP '02. Proceedings of the 9th International Conference on Neural Information Processing. Computational Intelligence for the E-Age (IEEE Cat. No.02EX575).
[16] Ansgar Jüngel,et al. A Positivity-Preserving Numerical Scheme for a Nonlinear Fourth Order Parabolic System , 2001, SIAM J. Numer. Anal..
[17] Peter A. Markowich,et al. The Stationary Semiconductor Device Equations. , 1987 .
[18] Stefano Micheletti,et al. Numerical Simulation of Resonant Tunneling Diodes with a Quantum-Drift-Diffusion Model , 2004 .
[19] J. Jerome. Analysis of Charge Transport , 1996 .
[20] A. Unterreiter,et al. On the stationary quantum drift-diffusion model , 1998 .
[21] Zhiping Yu,et al. Efficient Multi-Dimensional Simulation of Quantum Confinement Effects in Advanced MOS Devices , 2000 .
[22] C. Kittel. Introduction to solid state physics , 1954 .
[23] Riccardo Sacco,et al. Mixed finite volume methods for semiconductor device simulation , 1997 .
[24] Franco Brezzi,et al. Numerical simulation of semiconductor devices , 1989 .
[25] Lutz Tobiska,et al. Numerical Methods for Singularly Perturbed Differential Equations , 1996 .
[26] C. M. Wolfe,et al. Physical Properties of Semiconductors , 1989 .
[27] R. Sacco. A mixed problem for electrostatic potential in semiconductors , 1994 .
[28] H. Grubin. The physics of semiconductor devices , 1979, IEEE Journal of Quantum Electronics.
[29] H. Gummel. A self-consistent iterative scheme for one-dimensional steady state transistor calculations , 1964 .
[30] A. Wettstein. Quantum effects in MOS devices , 2000 .
[31] Can the Density Gradient Approach Describe the Source-Drain Tunnelling in Decanano Double-Gate MOSFETs? , 2002 .
[32] A. Pirovano,et al. Two-dimensional quantum effects in nanoscale MOSFETs , 2002 .
[33] Massimo V. Fischetti,et al. Ballistic FET modeling using QDAME: quantum device analysis by modal evaluation , 2002 .
[34] Randolph E. Bank,et al. The Finite Volume Scharfetter-Gummel method for steady convection diffusion equations , 1998 .
[35] Nicolas Vauchelet,et al. Analysis of a Drift-Diffusion-Schrödinger–Poisson model , 2002 .
[36] Joseph W. Jerome,et al. A finite element approximation theory for the drift diffusion semiconductor model , 1991 .
[37] A. Schenk. Physical Modeling of Deep-Submicron Devices , 2001, 31st European Solid-State Device Research Conference.
[38] S. Selberherr. Analysis and simulation of semiconductor devices , 1984 .
[39] J. Lions,et al. Problèmes aux limites non homogènes et applications , 1968 .
[40] W. Fichtner,et al. Numerical methods for semiconductor device simulation , 1983, IEEE Transactions on Electron Devices.
[41] G. Iafrate,et al. Quantum correction to the equation of state of an electron gas in a semiconductor. , 1989, Physical review. B, Condensed matter.
[42] Atta,et al. Nanoscale device modeling: the Green’s function method , 2000 .
[43] Robert W. Dutton,et al. Density-gradient analysis of MOS tunneling , 2000 .