Quantum-corrected drift-diffusion models for transport in semiconductor devices

In this paper, we propose a unified framework for Quantum-corrected drift-diffusion (QCDD) models in nanoscale semiconductor device simulation. QCDD models are presented as a suitable generalization of the classical drift-diffusion (DD) system, each particular model being identified by the constitutive relation for the quantum-correction to the electric potential. We examine two special, and relevant, examples of QCDD models; the first one is the modified DD model named Schrodinger-Poisson-drift-diffusion, and the second one is the quantum-drift-diffusion (QDD) model. For the decoupled solution of the two models, we introduce a functional iteration technique that extends the classical Gummel algorithm widely used in the iterative solution of the DD system. We discuss the finite element discretization of the various differential subsystems, with special emphasis on their stability properties, and illustrate the performance of the proposed algorithms and models on the numerical simulation of nanoscale devices in two spatial dimensions.

[1]  Andreas Unterreiter,et al.  The Stationary Current { VoltageCharacteristics of the Quantum DriftDi usion ModelRen , 1999 .

[2]  A. Benvenuti,et al.  Self-consistent 2-D model for quantum effects in n-MOS transistors , 1998 .

[3]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[4]  Pierre Degond,et al.  A coupled Schrödinger drift-diffusion model for quantum semiconductor device simulations , 2002 .

[5]  Thomas Kerkhoven,et al.  A proof of convergence of Gummel's algorithm for realistic device geometries , 1986 .

[6]  Thomas Kerkhoven,et al.  A Spectral Analysis of the Decoupling Algorithm for Semiconductor Simulation , 1988 .

[7]  C. Moglestue,et al.  Self‐consistent calculation of electron and hole inversion charges at silicon–silicon dioxide interfaces , 1986 .

[8]  M. Ancona,et al.  Macroscopic physics of the silicon inversion layer. , 1987, Physical review. B, Condensed matter.

[9]  Ansgar Jüngel,et al.  Quasi-hydrodynamic Semiconductor Equations , 2001 .

[10]  W. Hänsch,et al.  The drift diffusion equation and its applications in MOSFET modeling , 1991 .

[11]  Paola Pietra,et al.  Two-dimensional exponential fitting and applications to drift-diffusion models , 1989 .

[12]  C. Schmeiser,et al.  Semiconductor equations , 1990 .

[13]  Stefano Micheletti,et al.  A Discretization Scheme for an Extended Drift-Diffusion Model Including Trap-Assisted Phenomena , 2000 .

[14]  René Pinnau,et al.  Uniform Convergence of an Exponentially Fitted Scheme for the Quantum Drift Diffusion Model , 2004, SIAM J. Numer. Anal..

[15]  30 nm MOSFET development based on processes for nanotechnology , 2002, ICONIP '02. Proceedings of the 9th International Conference on Neural Information Processing. Computational Intelligence for the E-Age (IEEE Cat. No.02EX575).

[16]  Ansgar Jüngel,et al.  A Positivity-Preserving Numerical Scheme for a Nonlinear Fourth Order Parabolic System , 2001, SIAM J. Numer. Anal..

[17]  Peter A. Markowich,et al.  The Stationary Semiconductor Device Equations. , 1987 .

[18]  Stefano Micheletti,et al.  Numerical Simulation of Resonant Tunneling Diodes with a Quantum-Drift-Diffusion Model , 2004 .

[19]  J. Jerome Analysis of Charge Transport , 1996 .

[20]  A. Unterreiter,et al.  On the stationary quantum drift-diffusion model , 1998 .

[21]  Zhiping Yu,et al.  Efficient Multi-Dimensional Simulation of Quantum Confinement Effects in Advanced MOS Devices , 2000 .

[22]  C. Kittel Introduction to solid state physics , 1954 .

[23]  Riccardo Sacco,et al.  Mixed finite volume methods for semiconductor device simulation , 1997 .

[24]  Franco Brezzi,et al.  Numerical simulation of semiconductor devices , 1989 .

[25]  Lutz Tobiska,et al.  Numerical Methods for Singularly Perturbed Differential Equations , 1996 .

[26]  C. M. Wolfe,et al.  Physical Properties of Semiconductors , 1989 .

[27]  R. Sacco A mixed problem for electrostatic potential in semiconductors , 1994 .

[28]  H. Grubin The physics of semiconductor devices , 1979, IEEE Journal of Quantum Electronics.

[29]  H. Gummel A self-consistent iterative scheme for one-dimensional steady state transistor calculations , 1964 .

[30]  A. Wettstein Quantum effects in MOS devices , 2000 .

[31]  Can the Density Gradient Approach Describe the Source-Drain Tunnelling in Decanano Double-Gate MOSFETs? , 2002 .

[32]  A. Pirovano,et al.  Two-dimensional quantum effects in nanoscale MOSFETs , 2002 .

[33]  Massimo V. Fischetti,et al.  Ballistic FET modeling using QDAME: quantum device analysis by modal evaluation , 2002 .

[34]  Randolph E. Bank,et al.  The Finite Volume Scharfetter-Gummel method for steady convection diffusion equations , 1998 .

[35]  Nicolas Vauchelet,et al.  Analysis of a Drift-Diffusion-Schrödinger–Poisson model , 2002 .

[36]  Joseph W. Jerome,et al.  A finite element approximation theory for the drift diffusion semiconductor model , 1991 .

[37]  A. Schenk Physical Modeling of Deep-Submicron Devices , 2001, 31st European Solid-State Device Research Conference.

[38]  S. Selberherr Analysis and simulation of semiconductor devices , 1984 .

[39]  J. Lions,et al.  Problèmes aux limites non homogènes et applications , 1968 .

[40]  W. Fichtner,et al.  Numerical methods for semiconductor device simulation , 1983, IEEE Transactions on Electron Devices.

[41]  G. Iafrate,et al.  Quantum correction to the equation of state of an electron gas in a semiconductor. , 1989, Physical review. B, Condensed matter.

[42]  Atta,et al.  Nanoscale device modeling: the Green’s function method , 2000 .

[43]  Robert W. Dutton,et al.  Density-gradient analysis of MOS tunneling , 2000 .