Spectral convergence of the quadrature discretization method in the solution of the Schrodinger and Fokker-Planck equations: comparison with sinc methods.

Spectral methods based on nonclassical polynomials and Fourier basis functions or sinc interpolation techniques are compared for several eigenvalue problems for the Fokker-Planck and Schrodinger equations. A very rapid spectral convergence of the eigenvalues versus the number of quadrature points is obtained with the quadrature discretization method (QDM) and the appropriate choice of the weight function. The QDM is a pseudospectral method and the rate of convergence is compared with the sinc method reported by Wei [J. Chem. Phys., 110, 8930 (1999)]. In general, sinc methods based on Fourier basis functions with a uniform grid provide a much slower convergence. The paper considers Fokker-Planck equations (and analogous Schrodinger equations) for the thermalization of electrons in atomic moderators and for a quartic potential employed to model chemical reactions. The solution of the Schrodinger equation for the vibrational states of I2 with a Morse potential is also considered.

[1]  David C. Clary,et al.  Potential optimized discrete variable representation , 1992 .

[2]  Larry A. Viehland,et al.  Velocity distribution functions and transport coefficients of atomic ions in atomic gases by a Gram—Charlier approach , 1994 .

[3]  Huazhou Wei Ghost levels and near-variational forms of the discrete variable representation: Application to H2O , 1997 .

[4]  Ronnie Kosloff,et al.  MAPPED FOURIER METHODS FOR LONG-RANGE MOLECULES : APPLICATION TO PERTURBATIONS IN THE RB2(0U+) PHOTOASSOCIATION SPECTRUM , 1999 .

[5]  V. Szalay The generalized discrete variable representation. An optimal design , 1996 .

[6]  B. Shizgal,et al.  A solution of Kramers equation for the isomerization of n‐butane in CCl4 , 1985 .

[7]  McMahon,et al.  Electric field dependence of transient electron transport properties in rare-gas moderators. , 1985, Physical review. A, General physics.

[8]  Tucker Carrington,et al.  The discrete variable representation of a triatomic Hamiltonian in bond length–bond angle coordinates , 1992 .

[9]  T. A. Zang,et al.  Spectral methods for fluid dynamics , 1987 .

[10]  E. A. Mason,et al.  Moment theory of electron thermalization in gases , 1982 .

[11]  B. Shizgal,et al.  Eigenvalues of the Boltzmann collision operator for binary gases: Mass dependence , 1981 .

[12]  Z. Cao,et al.  Bound-state spectra for supersymmetric quantum mechanics , 2004 .

[13]  Dimitris G. Papageorgiou,et al.  An Efficient Chebyshev-Lanczos Method for Obtaining Eigensolutions of the Schrödinger Equation on a Grid , 1996 .

[14]  K. S. Fa,et al.  Power law diffusion coefficient and anomalous diffusion: analysis of solutions and first passage time. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  R. Kosloff,et al.  Quasibound states in long-range alkali dimers: Grid method calculations , 1997 .

[16]  Bernie D. Shizgal,et al.  A Chebyshev pseudospectral multi-domain method for steady flow past a cylinder up to Re = 150 , 1994 .

[17]  P. Pulay,et al.  A new grid-based method for the direct computation of excited molecular vibrational states: test application to formaldehyde , 1995 .

[18]  R. Larson,et al.  Kramers’s theory of chemical kinetics: Eigenvalue and eigenfunction analysis , 1978 .

[19]  R. Hill,et al.  Rates of convergence and error estimation formulas for the Rayleigh–Ritz variational method , 1985 .

[20]  B. Poirier,et al.  Eigenspectra calculations using Cartesian coordinates and a rotational symmetry adapted Lanczos method , 2003 .

[21]  L Schimansky-Geier,et al.  Kramers problem in evolutionary strategies. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  Heli Chen,et al.  The quadrature discretization method (QDM) in the solution of the Schrödinger equation with nonclassical basis functions , 1996 .

[23]  Bernie D. Shizgal,et al.  A Gaussian quadrature procedure for use in the solution of the Boltzmann equation and related problems , 1981 .

[24]  Meyer,et al.  Schwinger and anomaly-free Kohn variational principles and a generalized Lanczos algorithm for nonsymmetric operators. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[25]  H. Risken The Fokker-Planck equation : methods of solution and applications , 1985 .

[26]  Blackmore,et al.  Discrete-ordinate method of solution of Fokker-Planck equations with nonlinear coefficients. , 1985, Physical review. A, General physics.

[27]  R.D.M. Garcia The application of nonclassical orthogonal polynomials in particle transport theory , 1999 .

[28]  A. Comtet,et al.  EXACTNESS OF SEMICLASSICAL BOUND STATE ENERGIES FOR SUPERSYMMETRIC QUANTUM MECHANICS , 1985 .

[29]  John P. Boyd A proof that the discrete singular convolution (DSC)/Lagrange-distributed approximating function (LDAF) method is inferior to high order finite differences , 2006, J. Comput. Phys..

[30]  Baer,et al.  Phase space approach for optimizing grid representations: The mapped Fourier method. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[31]  Spectral difference methods for solving the differential equations of chemical physics , 2002 .

[32]  Heli Chen,et al.  A spectral solution of the Sturm-Liouville equation: comparison of classical and nonclassical basis sets , 2001 .

[33]  G. Wei,et al.  A unified approach for the solution of the Fokker-Planck equation , 2000, physics/0004074.

[34]  Heli Chen,et al.  A Direct Spectral Collocation Poisson Solver in Polar and Cylindrical Coordinates , 2000 .

[35]  R. Larson,et al.  Friction and velocity in Kramers’ theory of chemical kinetics , 1980 .

[36]  C. Schwartz High-accuracy approximation techniques for analytic functions , 1985 .

[37]  M. Hesse,et al.  The unexplained accuracy of the Lagrange-mesh method. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[38]  R. Peyret Spectral Methods for Incompressible Viscous Flow , 2002 .

[39]  D. Baye,et al.  Lagrange meshes from nonclassical orthogonal polynomials. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[40]  Bernie D. Shizgal,et al.  A discrete ordinate method of solution of linear boundary value and eigenvalue problems , 1984 .

[41]  P. Hänggi,et al.  Reaction-rate theory: fifty years after Kramers , 1990 .

[42]  J. Light,et al.  Molecular vibrations: Iterative solution with energy selected bases , 2003 .

[43]  Hans-Dieter Meyer,et al.  A band‐Lanczos method for computing matrix elements of a resolvent , 1989 .

[44]  Guo-Wei Wei,et al.  Discrete singular convolution for the solution of the Fokker–Planck equation , 1999 .

[45]  F. Stenger Numerical Methods Based on Sinc and Analytic Functions , 1993 .

[46]  D. Gottlieb,et al.  Numerical analysis of spectral methods : theory and applications , 1977 .

[47]  D. Colbert,et al.  A novel discrete variable representation for quantum mechanical reactive scattering via the S-matrix Kohn method , 1992 .

[48]  Livio Gibelli,et al.  Spectral convergence of the Hermite basis function solution of the Vlasov equation: The free-streaming term , 2006, J. Comput. Phys..

[49]  J. Light,et al.  Phase space optimization of quantum representations: Direct-product basis sets , 1999 .

[50]  B. Poirier,et al.  Rovibrational spectroscopy calculations of neon dimer using a phase space truncated Weyl-Heisenberg wavelet basis. , 2006, The Journal of chemical physics.

[51]  On one-dimensional discrete variable representations with general basis functions , 2003 .

[52]  Kurt E. Shuler,et al.  On the Relaxation of the Hard—Sphere Rayleigh and Lorentz Gas , 1964 .

[53]  Guo-Wei Wei,et al.  Lagrange Distributed Approximating Functionals , 1997 .

[54]  M. S. Abdelmonem,et al.  CORRIGENDUM: The analytic inversion of any finite symmetric tridiagonal matrix , 1997 .

[55]  T. Carrington,et al.  Discrete‐Variable Representations and their Utilization , 2007 .

[56]  Bernie D. Shizgal,et al.  Matrix elements of the linear Boltzmann collision operator for systems of two components at different temperatures , 1974 .

[57]  T. Carrington,et al.  Discrete variable representations of complicated kinetic energy operators , 1994 .

[58]  D. Gottlieb,et al.  Numerical analysis of spectral methods , 1977 .

[59]  Guo-Wei Wei,et al.  Solving quantum eigenvalue problems by discrete singular convolution , 2000 .

[60]  B. Shizgal Nonequilibrium time dependent theory of hot atom reactions. III. Comparison with Estrup--Wolfgang theory , 1981 .

[61]  Bernie D. Shizgal,et al.  Eigenvalues of the boltzmann collision operator for binary gases: Relaxation of anisotropic distributions , 1983 .

[62]  B. Shizgal,et al.  A collisional kinetic theory of a plane parallel evaporating planetary atmosphere , 1986 .

[63]  B. Shizgal Discrete versus continuum relaxation modes of a hard sphere gas , 1984 .

[64]  Heli Chen,et al.  The Quadrature Discretization Method (QDM) in comparison with other numerical methods of solution of the Fokker–Planck equation for electron thermalization , 1998 .

[65]  B. Shizgal Eigenvalues of the Lorentz Fokker–Planck equation , 1979 .

[66]  H. Risken,et al.  Solutions of the Fokker-Planck equation describing the thermalization of neutrons in a heavy gas moderator , 1984 .

[67]  J. Light,et al.  Generalized discrete variable approximation in quantum mechanics , 1985 .

[68]  Bernie D. Shizgal,et al.  Matrix elements of the Boltzmann collision operator for gas mixtures , 1979 .

[69]  J. Light,et al.  On distributed Gaussian bases for simple model multidimensional vibrational problems , 1986 .