Non-equilibrium processing leads to record high thermoelectric figure of merit in PbTe–SrTe

[1]  Heng Wang,et al.  Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe , 2016, Science.

[2]  M. Kanatzidis,et al.  Valence Band Modification and High Thermoelectric Performance in SnTe Heavily Alloyed with MnTe. , 2015 .

[3]  Sean Li,et al.  Heterogeneous Distribution of Sodium for High Thermoelectric Performance of p‐type Multiphase Lead‐Chalcogenides , 2015 .

[4]  Xinbing Zhao,et al.  Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials , 2015, Nature Communications.

[5]  Heng Wang,et al.  Measuring thermoelectric transport properties of materials , 2015 .

[6]  M. Kanatzidis,et al.  Extraordinary role of Hg in enhancing the thermoelectric performance of p-type SnTe , 2015 .

[7]  M. Kanatzidis,et al.  Broad temperature plateau for thermoelectric figure of merit ZT>2 in phase-separated PbTe0.7S0.3 , 2014, Nature Communications.

[8]  Hui Sun,et al.  High thermoelectric performance of p-type SnTe via a synergistic band engineering and nanostructuring approach. , 2014, Journal of the American Chemical Society.

[9]  M. Kanatzidis,et al.  Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals , 2014, Nature.

[10]  M. Kanatzidis,et al.  Spectroscopic evidence for the convergence of lower and upper valence bands of PbQ (Q=Te, Se, S) with rising temperature , 2014, 1404.1807.

[11]  Heng Wang,et al.  Tuning bands of PbSe for better thermoelectric efficiency , 2014 .

[12]  Heng Wang,et al.  Temperature dependent band gap in PbX (X = S, Se, Te) , 2013 .

[13]  Shanyu Wang,et al.  High Thermoelectric Figure of Merit of p-Type Ternary Unfilled Skutterudite FeSb 2 Te via Ge Doping , 2013 .

[14]  X. Su,et al.  Realization of high thermoelectric performance in p-type unfilled ternary skutterudites FeSb2+xTe1−x via band structure modification and significant point defect scattering , 2013 .

[15]  M. Kanatzidis,et al.  All-scale hierarchical thermoelectrics: MgTe in PbTe facilitates valence band convergence and suppresses bipolar thermal transport for high performance , 2013 .

[16]  Hao Li,et al.  High thermoelectric performance via hierarchical compositionally alloyed nanostructures. , 2013, Journal of the American Chemical Society.

[17]  Heng Wang,et al.  Band Engineering of Thermoelectric Materials , 2012, Advanced materials.

[18]  M. Kanatzidis,et al.  High-performance bulk thermoelectrics with all-scale hierarchical architectures , 2012, Nature.

[19]  Timothy P. Hogan,et al.  Raising the thermoelectric performance of p-type PbS with endotaxial nanostructuring and valence-band offset engineering using CdS and ZnS. , 2012, Journal of the American Chemical Society.

[20]  G. J. Snyder,et al.  Thermopower enhancement in Pb1−xMnxTe alloys and its effect on thermoelectric efficiency , 2012 .

[21]  Shanyu Wang,et al.  Enhanced thermoelectric performance in p-type Ca0.5Ce0.5Fe4−xNixSb12 skutterudites by adjusting the carrier concentration , 2012 .

[22]  A. Zunger,et al.  Extracting E versus k ⃗ effective band structure from supercell calculations on alloys and impurities , 2012 .

[23]  A. K. Mohanty,et al.  A First Principles Study , 2012 .

[24]  G. J. Snyder,et al.  Stabilizing the Optimal Carrier Concentration for High Thermoelectric Efficiency , 2011, Advanced materials.

[25]  Heng Wang,et al.  Convergence of electronic bands for high performance bulk thermoelectrics , 2011, Nature.

[26]  M. Kanatzidis,et al.  Strained endotaxial nanostructures with high thermoelectric figure of merit. , 2011, Nature chemistry.

[27]  Ali Shakouri,et al.  Nanostructured Thermoelectrics: Big Efficiency Gains from Small Features , 2010, Advanced materials.

[28]  Voicu Popescu,et al.  Effective band structure of random alloys. , 2010, Physical review letters.

[29]  P. Kent,et al.  Thermodynamic properties of PbTe, PbSe, and PbS: First-principles study , 2009 .

[30]  G. J. Snyder,et al.  Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States , 2008, Science.

[31]  M. Dresselhaus,et al.  High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys , 2008, Science.

[32]  G. J. Snyder,et al.  Complex thermoelectric materials. , 2008, Nature materials.

[33]  A. Majumdar,et al.  Enhanced thermoelectric performance of rough silicon nanowires , 2008, Nature.

[34]  M. Kanatzidis,et al.  Ab initio studies of the electronic structure of defects in PbTe , 2006, cond-mat/0605538.

[35]  Richard L. Martin,et al.  Energy band gaps and lattice parameters evaluated with the Heyd-Scuseria-Ernzerhof screened hybrid functional. , 2005, The Journal of chemical physics.

[36]  M. Toprak,et al.  The Impact of Nanostructuring on the Thermal Conductivity of Thermoelectric CoSb3 , 2004 .

[37]  G. Meisner,et al.  Strain field fluctuation effects on lattice thermal conductivity of ZrNiSn-based thermoelectric compounds , 2004 .

[38]  Timothy P. Hogan,et al.  Cubic AgPbmSbTe2+m: Bulk Thermoelectric Materials with High Figure of Merit. , 2004 .

[39]  C. Walle,et al.  First-principles calculations for defects and impurities: Applications to III-nitrides , 2004 .

[40]  M. Kanatzidis,et al.  Cubic AgPbmSbTe2+m: Bulk Thermoelectric Materials with High Figure of Merit , 2004, Science.

[41]  Wei Chen,et al.  Cubic : Bulk Thermoelectric Materials with High Figure of Merit , 2004 .

[42]  Chris G. Van de Walle,et al.  Universal alignment of hydrogen levels in semiconductors, insulators and solutions , 2003, Nature.

[43]  R. Venkatasubramanian,et al.  Thin-film thermoelectric devices with high room-temperature figures of merit , 2001, Nature.

[44]  F. Disalvo,et al.  Thermoelectric cooling and power generation , 1999, Science.

[45]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[46]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[47]  P. Heenan,et al.  Thirteenth International Conference on Thermoelectrics , 1995 .

[48]  D. Rowe CRC Handbook of Thermoelectrics , 1995 .

[49]  C. M. Thrush,et al.  Lead strontium telluride and lead barium telluride grown by molecular‐beam epitaxy , 1987 .

[50]  H. Sitter,et al.  Structure of the second valence band in PbTe , 1977 .

[51]  E. Putley Galvano- and thermo-magnetic coefficients for a multi-band conductor , 1975 .

[52]  R. Blachnik,et al.  Thermodynamische Eigenschaften von IV–VI-Verbindungen: Bleichalkogenide / Thermodynamic Properties of IV–VI-Compounds: Leadchalcogenides , 1974 .

[53]  G. A. Slack,et al.  Thermal Conductivity of Silicon and Germanium from 3°K to the Melting Point , 1964 .

[54]  R. S. Allgaier Valence Bands in Lead Telluride , 1961 .

[55]  Paul G. Klemens,et al.  Thermal Resistance due to Point Defects at High Temperatures , 1960 .

[56]  J. Callaway Model for Lattice Thermal Conductivity at Low Temperatures , 1959 .

[57]  A. Joffé,et al.  Heat Transfer in Semiconductors , 1956 .

[58]  P. Klemens The Scattering of Low-Frequency Lattice Waves by Static Imperfections , 1955 .