Information–theoretic implications of quantum causal structures

It is a relatively new insight of classical statistics that empirical data can contain information about causation rather than mere correlation. First algorithms have been proposed that are capable of testing whether a presumed causal relationship is compatible with an observed distribution. However, no systematic method is known for treating such problems in a way that generalizes to quantum systems. Here, we describe a general algorithm for computing information-theoretic constraints on the correlations that can arise from a given causal structure, where we allow for quantum systems as well as classical random variables. The general technique is applied to two relevant cases: first, we show that the principle of information causality appears naturally in our framework and go on to generalize and strengthen it. Second, we derive bounds on the correlations that can occur in a networked architecture, where a set of few-body quantum systems is distributed among some parties.

[1]  L. Goddard Information Theory , 1962, Nature.

[2]  John Young,et al.  information theory , 1971 .

[3]  H. P. Williams Fourier's Method of Linear Programming and its Dual , 1986 .

[4]  Physical Review Letters 63 , 1989 .

[5]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[6]  M. Fannes,et al.  Finitely correlated states on quantum spin chains , 1992 .

[7]  Ekert,et al.  "Event-ready-detectors" Bell experiment via entanglement swapping. , 1993, Physical review letters.

[8]  Franz von Kutschera,et al.  Causation , 1993, J. Philos. Log..

[9]  S. Popescu,et al.  Quantum nonlocality as an axiom , 1994 .

[10]  Robert R. Tucci Quantum Bayesian Nets , 1995, quant-ph/9706039.

[11]  D. Vernon Inform , 1995, Encyclopedia of the UN Sustainable Development Goals.

[12]  Harry Buhrman,et al.  Distributed Quantum Computing , 2003, MFCS.

[13]  M. Freedman,et al.  Nonlocality & Communication Complexity , 2004 .

[14]  H. Buhrman,et al.  Limit on nonlocality in any world in which communication complexity is not trivial. , 2005, Physical review letters.

[15]  G. Vidal,et al.  Classical simulation of quantum many-body systems with a tree tensor network , 2005, quant-ph/0511070.

[16]  A. Acín,et al.  Bounding the set of quantum correlations. , 2006, Physical review letters.

[17]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[18]  J. Cirac,et al.  Entanglement percolation in quantum networks , 2006, quant-ph/0612167.

[19]  Frank Verstraete,et al.  Matrix product state representations , 2006, Quantum Inf. Comput..

[20]  D. Poulin,et al.  Quantum Graphical Models and Belief Propagation , 2007, 0708.1337.

[21]  Raymond W. Yeung,et al.  Information Theory and Network Coding , 2008 .

[22]  A. Winter,et al.  Information causality as a physical principle , 2009, Nature.

[23]  Nicolas Gisin,et al.  Quantum repeaters based on atomic ensembles and linear optics , 2009, 0906.2699.

[24]  M. Pawłowski,et al.  Recovering part of the boundary between quantum and nonquantum correlations from information causality , 2009 .

[25]  M. Navascués,et al.  A glance beyond the quantum model , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[26]  A. J. Short,et al.  Entropy in general physical theories , 2009, 0909.4801.

[27]  D. Gross,et al.  All reversible dynamics in maximally nonlocal theories are trivial. , 2009, Physical review letters.

[28]  H. Barnum,et al.  Entropy and information causality in general probabilistic theories , 2009, 0909.5075.

[29]  A. J. Short,et al.  Information causality from an entropic and a probabilistic perspective , 2011, 1107.4031.

[30]  W. Marsden I and J , 2012 .

[31]  T. Fritz Beyond Bell's theorem: correlation scenarios , 2012, 1206.5115.

[32]  T. Fritz,et al.  Entropic approach to local realism and noncontextuality , 2012, 1201.3340.

[33]  L. Masanes,et al.  Deriving quantum theory from its local structure and reversibility. , 2011, Physical review letters.

[34]  N. Gisin,et al.  Bilocal versus nonbilocal correlations in entanglement-swapping experiments , 2011, 1112.4502.

[35]  R. Renner,et al.  Tsirelson's bound from a generalized data processing inequality , 2011, 1108.4549.

[36]  R. Chaves Entropic inequalities as a necessary and sufficient condition to noncontextuality and locality , 2013, 1301.5714.

[37]  T. Fritz,et al.  Local orthogonality as a multipartite principle for quantum correlations , 2012, Nature Communications.

[38]  Mark M. Wilde,et al.  Quantum Information Theory , 2013 .

[39]  Rafael Chaves,et al.  Entropic Inequalities and Marginal Problems , 2011, IEEE Transactions on Information Theory.

[40]  Moritz Grosse-Wentrup,et al.  Quantifying causal influences , 2012, 1203.6502.

[41]  S. Wehner,et al.  Bell Nonlocality , 2013, 1303.2849.

[42]  Matthew F Pusey,et al.  Theory-independent limits on correlations from generalized Bayesian networks , 2014, 1405.2572.

[43]  D. Gross,et al.  Causal structures from entropic information: geometry and novel scenarios , 2013, 1310.0284.

[44]  Bernhard Schölkopf,et al.  Inferring latent structures via information inequalities , 2014, UAI.

[45]  R. V. Meter Quantum Networking: Van Meter/Quantum Networking , 2014 .

[46]  T. Fritz,et al.  Exploring the Local Orthogonality Principle , 2013, 1311.6699.

[47]  Nihat Ay,et al.  Information-theoretic inference of common ancestors , 2010, Entropy.

[48]  C. J. Wood,et al.  The lesson of causal discovery algorithms for quantum correlations: causal explanations of Bell-inequality violations require fine-tuning , 2012, 1208.4119.

[49]  Č. Brukner,et al.  A graph-separation theorem for quantum causal models , 2014, 1406.0430.

[50]  A. Acín,et al.  Almost quantum correlations , 2014, Nature Communications.

[51]  Tobias Fritz,et al.  Beyond Bell’s Theorem II: Scenarios with Arbitrary Causal Structure , 2014, 1404.4812.

[52]  J. S. BELLt Einstein-Podolsky-Rosen Paradox , 2018 .

[53]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.