Nucleoside triphosphate-binding proteins: different scaffolds to achieve phosphoryl transfer

[1]  R. G. Kemp,et al.  Cloning, sequencing, and expression of pyrophosphate-dependent phosphofructokinase from Propionibacterium freudenreichii. , 1991, The Journal of biological chemistry.

[2]  K. Linton,et al.  The Escherichia coli ATP‐binding cassette (ABC) proteins , 1998, Molecular microbiology.

[3]  D. Frick,et al.  The MutT Proteins or “Nudix” Hydrolases, a Family of Versatile, Widely Distributed, “Housecleaning” Enzymes* , 1996, The Journal of Biological Chemistry.

[4]  S Cusack,et al.  Crystal structure analysis of the activation of histidine by Thermus thermophilus histidyl-tRNA synthetase. , 1997, Biochemistry.

[5]  Theo Wallimann,et al.  Structure of mitochondrial creatine kinase , 1996, Nature.

[6]  T. Steitz,et al.  Structural biology: A mechanism for all polymerases , 1998, Nature.

[7]  T. Hunter,et al.  Protein kinases and phosphatases: The Yin and Yang of protein phosphorylation and signaling , 1995, Cell.

[8]  L. Grivell,et al.  ATP-dependent proteases that also chaperone protein biogenesis. , 1997, Trends in biochemical sciences.

[9]  M. Delarue,et al.  Crystal structure of a prokaryotic aspartyl tRNA‐synthetase. , 1994, The EMBO journal.

[10]  P. Evans,et al.  Crystal structure of unliganded phosphofructokinase from Escherichia coli. , 1989, Journal of molecular biology.

[11]  Joseph Schlessinger,et al.  Structure of the FGF Receptor Tyrosine Kinase Domain Reveals a Novel Autoinhibitory Mechanism , 1996, Cell.

[12]  Anthony Maxwell,et al.  Crystal structure of the breakage–reunion domain of DNA gyrase , 1997, Nature.

[13]  C. Carter,et al.  Tryptophanyl-tRNA synthetase crystal structure reveals an unexpected homology to tyrosyl-tRNA synthetase. , 1995, Structure.

[14]  F. Hartl Molecular chaperones in cellular protein folding , 1996, Nature.

[15]  D. Herschlag,et al.  Mapping the transition state for ATP hydrolysis: implications for enzymatic catalysis. , 1995, Chemistry & biology.

[16]  C. Croce,et al.  The FHIT Gene at 3p14.2 Is Abnormal in Lung Cancer , 1996, Cell.

[17]  A. Nairn,et al.  Structural Basis for the Autoinhibition of Calcium/Calmodulin-Dependent Protein Kinase I , 1996, Cell.

[18]  W. Kabsch,et al.  Crystal structure of the GTPase-activating domain of human p120GAP and implications for the interaction with Ras , 1996, Nature.

[19]  Bernd Bukau,et al.  The Hsp70 and Hsp60 Chaperone Machines , 1998, Cell.

[20]  J. Coggins,et al.  Evidence for an ancestral core structure in nucleotide-binding proteins with the type A motif. , 1991, Journal of molecular biology.

[21]  H. Fromm,et al.  The mechanism of the adenylosuccinate synthetase reaction as studied by positional isotope exchange. , 1984, The Journal of biological chemistry.

[22]  Yong Je Chung,et al.  Crystal structure of bacteriophage T7 RNA polymerase at 3.3 Å resolution , 1993, Nature.

[23]  S. Cusack Eleven down and nine to go , 1995, Nature Structural Biology.

[24]  A. Brünger,et al.  Structure of the ATP-dependent oligomerization domain of N-ethylmaleimide sensitive factor complexed with ATP , 1998, Nature Structural Biology.

[25]  R. Scopes Binding of substrates and other anions to yeast phosphoglycerate kinase. , 1978, European journal of biochemistry.

[26]  J. Knowles Enzyme-catalyzed phosphoryl transfer reactions. , 1980, Annual review of biochemistry.

[27]  I. Schlichting,et al.  Structures of active conformations of UMP kinase from Dictyostelium discoideum suggest phosphoryl transfer is associative. , 1997, Biochemistry.

[28]  J. Howard,et al.  Molecular motors: structural adaptations to cellular functions , 1997, Nature.

[29]  M. Tsai,et al.  Mechanism of adenylate kinase. Structural and functional demonstration of arginine-138 as a key catalytic residue that cannot be replaced by lysine. , 1990, Biochemistry.

[30]  T. Hunter,et al.  The protein kinases of budding yeast: six score and more. , 1997, Trends in biochemical sciences.

[31]  B Schierbeck,et al.  Product inhibition studies of yeast phosphoglycerate kinase evaluating properties of multiple substrate binding sites. , 1979, Biochimica et biophysica acta.

[32]  Wim G. J. Hol,et al.  Predicted nucleotide-binding properties of p21 protein and its cancer-associated variant , 1983, Nature.

[33]  D. Moras,et al.  Structural and functional considerations of the aminoacylation reaction. , 1997, Trends in biochemical sciences.

[34]  M. S. Chapman,et al.  Transition state structure of arginine kinase: implications for catalysis of bimolecular reactions. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[35]  W G Hol,et al.  A model for the mechanism of human topoisomerase I. , 1998, Science.

[36]  D. Walters,et al.  The active site of pyrophosphate-dependent phosphofructo-1-kinase based on site-directed mutagenesis and molecular modeling. , 1998, Archives of biochemistry and biophysics.

[37]  Katrin Rittinger,et al.  Structure at 1.65 Å of RhoA and its GTPase-activating protein in complex with a transition-state analogue , 1997, Nature.

[38]  T. Nowak,et al.  Kinetic evidence for a dual cation role for muscle pyruvate kinase. , 1982, Archives of biochemistry and biophysics.

[39]  Laurence H. Pearl,et al.  A molecular clamp in the crystal structure of the N-terminal domain of the yeast Hsp90 chaperone , 1997, Nature Structural Biology.

[40]  P. Slonimski,et al.  Birth of the D-E-A-D box , 1989, Nature.

[41]  L. Johnson,et al.  Two structures of the catalytic domain of phosphorylase kinase: an active protein kinase complexed with substrate analogue and product. , 1995, Structure.

[42]  L. D. Barnes,et al.  Genetic, biochemical, and crystallographic characterization of Fhit-substrate complexes as the active signaling form of Fhit. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[43]  David J Weber,et al.  NMR studies of the conformations and location of nucleotides bound to the Escherichia coli MutT enzyme. , 1995, Biochemistry.

[44]  David L. Stokes,et al.  Structure of the calcium pump from sarcoplasmic reticulum at 8-Å resolution , 1998, Nature.

[45]  A. D. Clark,et al.  Structure of HIV-1 reverse transcriptase/DNA complex at 7 Å resolution showing active site locations , 1992, Nature.

[46]  J. Janin,et al.  X‐ray structure of nucleoside diphosphate kinase. , 1992, The EMBO journal.

[47]  J. Mattick,et al.  Conservation of the regulatory subunit for the Clp ATP-dependent protease in prokaryotes and eukaryotes. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[48]  M. Finbow,et al.  The vacuolar H+-ATPase: a universal proton pump of eukaryotes. , 1997, The Biochemical journal.

[49]  L. Sieker,et al.  Structure of the oxidized form of a flavodoxin at 2.5-Angstrom resolution: resolution of the phase ambiguity by anomalous scattering. , 1972, Proceedings of the National Academy of Sciences of the United States of America.

[50]  J. Steitz,et al.  Alive with DEAD proteins , 1991, Nature.

[51]  G Folkers,et al.  The three‐dimensional structure of thymidine kinase from Herpes simplex virus type 1 , 1995, FEBS letters.

[52]  I. Rayment,et al.  Molecular structure of kanamycin nucleotidyltransferase determined to 3.0-A resolution. , 1993, Biochemistry.

[53]  B. Kemp,et al.  Insights into autoregulation from the crystal structure of twitchin kinase , 1994, Nature.

[54]  S. Shuman Closing the gap on DNA ligase. , 1996, Structure.

[55]  S. Liaw,et al.  Discovery of the ammonium substrate site on glutamine synthetase, A third cation binding site , 1995, Protein science : a publication of the Protein Society.

[56]  G. Eriani,et al.  The active site of yeast aspartyl-tRNA synthetase: structural and functional aspects of the aminoacylation reaction. , 1994, The EMBO journal.

[57]  J. Deisenhofer,et al.  The crystal structure of the bifunctional enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase reveals distinct domain homologies. , 1996, Structure.

[58]  Mitsuhiko Ikura,et al.  NMR structure of the histidine kinase domain of the E. coli osmosensor EnvZ , 1998, Nature.

[59]  W. Lipscomb,et al.  Two‐Metal Ion Catalysis in Enzymatic Acyl‐ and Phosphoryl‐Transfer Reactions , 1996 .

[60]  R. Stroud,et al.  Structure of the conserved GTPase domain of the signal recognition particle , 1997, Nature.

[61]  Robert Huber,et al.  Crystal Structure of the Thermosome, the Archaeal Chaperonin and Homolog of CCT , 1998, Cell.

[62]  T. Steitz,et al.  Structural dynamics of yeast hexokinase during catalysis. , 1981, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[63]  W. Kühlbrandt,et al.  Three-dimensional map of the plasma membrane H+-ATPase in the open conformation , 1998, Nature.

[64]  C. W. Tabor,et al.  S-Adenosylmethionine synthetase from Escherichia coli. , 1980, The Journal of biological chemistry.

[65]  J. Roca,et al.  The capture of a DNA double helix by an ATP-dependent protein clamp: A key step in DNA transport by type II DNA topoisomerases , 1992, Cell.

[66]  M. Fisher,et al.  Interactions between the GroE Chaperonins and Rhodanese , 1995, The Journal of Biological Chemistry.

[67]  J. W. Campbell,et al.  Structure of yeast phosphoglycerate mutase , 1974, Nature.

[68]  C. Croce,et al.  Absence of Fhit protein in primary lung tumors and cell lines with FHIT gene abnormalities. , 1997, Cancer research.

[69]  Elizabeth J. Goldsmith,et al.  Atomic structure of the MAP kinase ERK2 at 2.3 Å resolution , 1994, Nature.

[70]  G. Montoya,et al.  Crystal structure of the NG domain from the signal-recognition particle receptor FtsY , 1997, Nature.

[71]  Irene T. Weber,et al.  The structure of the E. coli recA protein monomer and polymer , 1992, Nature.

[72]  Sung-Hou Kim,et al.  Crystal structure of cyclin-dependent kinase 2 , 1993, Nature.

[73]  N. Hirokawa,et al.  Kinesin and dynein superfamily proteins and the mechanism of organelle transport. , 1998, Science.

[74]  J F Sinclair,et al.  Structure of bacterial luciferase. , 1995, Current opinion in structural biology.

[75]  Neil A. Ranson,et al.  Location of a folding protein and shape changes in GroEL–GroES complexes imaged by cryo-electron microscopy , 1994, Nature.

[76]  Helen R Saibil,et al.  The Chaperonin ATPase Cycle: Mechanism of Allosteric Switching and Movements of Substrate-Binding Domains in GroEL , 1996, Cell.

[77]  C. Croce,et al.  The FHIT gene at 3p14.2 is abnormal in breast carcinomas. , 1996, Cancer research.

[78]  J. Rothman,et al.  Mechanisms of intracellular protein transport , 1994, Nature.

[79]  P. Schultz,et al.  Structure and conformational changes of DNA topoisomerase II visualized by electron microscopy. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[80]  R. Kelly,et al.  Protein translocation: Rehearsing the ABCs , 1996, Current Biology.

[81]  L. Pedersen,et al.  Structural investigation of the antibiotic and ATP-binding sites in kanamycin nucleotidyltransferase. , 1995, Biochemistry.

[82]  J. Berger,et al.  Structure and mechanism of DNA topoisomerase II , 1996, Nature.

[83]  S. Lindquist,et al.  Hspl04 is a highly conserved protein with two essential nucleotide-binding sites , 1991, Nature.

[84]  L. Delbaere,et al.  Structure and Mechanism of Phosphoenolpyruvate Carboxykinase* , 1997, The Journal of Biological Chemistry.

[85]  T. Steitz,et al.  Structure of the recA protein–ADP complex , 1992, Nature.

[86]  G. Schulz Binding of nucleotides by proteins , 1992, Current Biology.

[87]  P Bork,et al.  An ATPase domain common to prokaryotic cell cycle proteins, sugar kinases, actin, and hsp70 heat shock proteins. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[88]  Zbigniew Dauter,et al.  Crystal structure of a dUTPase , 1992, Nature.

[89]  J. Roca,et al.  DNA transport by a type II DNA topoisomerase: Evidence in favor of a two-gate mechanism , 1994, Cell.

[90]  R. Sousa,et al.  Structural and mechanistic relationships between nucleic acid polymerases. , 1996, Trends in biochemical sciences.

[91]  Michael Y. Galperin,et al.  A diverse superfamily of enzymes with ATP‐dependent carboxylate—amine/thiol ligase activity , 1997, Protein science : a publication of the Protein Society.

[92]  W. Kabsch,et al.  Mitochondrial creatine kinase--a square protein. , 1997, Current opinion in structural biology.

[93]  D. Schomburg,et al.  Crystal structure of the catalytic subunit of protein kinase CK2 from Zea mays at 2.1 Å resolution , 1998, The EMBO journal.

[94]  S. C. West,et al.  DNA Helicases: New Breeds of Translocating Motors and Molecular Pumps , 1996, Cell.

[95]  Zbyszek Otwinowski,et al.  The crystal structure of the bacterial chaperonln GroEL at 2.8 Å , 1994, Nature.

[96]  L. Johnson,et al.  Active and Inactive Protein Kinases: Structural Basis for Regulation , 1996, Cell.

[97]  K. Flaherty,et al.  Three-dimensional structure of the ATPase fragment of a 70K heat-shock cognate protein , 1990, Nature.

[98]  John Kuriyan,et al.  Crystal structure of the Src family tyrosine kinase Hck , 1997, Nature.

[99]  I. Pastan,et al.  P-glycoproteins: mediators of multidrug resistance. , 1993, Seminars in cell biology.

[100]  W. Kabsch,et al.  Atomic structure of the actin: DNase I complex , 1990, Nature.

[101]  A. Mondragón,et al.  Crystal structure of the amino-terminal fragment of vaccinia virus DNA topoisomerase I at 1.6 A resolution. , 1994, Structure.

[102]  J. Berger Type II DNA topoisomerases. , 1998, Current opinion in structural biology.

[103]  C. Croce,et al.  Structure and expression of the human FHIT gene in normal and tumor cells. , 1997, Cancer research.

[104]  J. Walker,et al.  Distantly related sequences in the alpha‐ and beta‐subunits of ATP synthase, myosin, kinases and other ATP‐requiring enzymes and a common nucleotide binding fold. , 1982, The EMBO journal.

[105]  T. Steitz,et al.  Crystal structure at 3.5 A resolution of HIV-1 reverse transcriptase complexed with an inhibitor. , 1992, Science.

[106]  Dae-Sil Lee,et al.  Crystal structure of Thermus aquaticus DNA polymerase , 1995, Nature.

[107]  P. R. Sibbald,et al.  The P-loop--a common motif in ATP- and GTP-binding proteins. , 1990, Trends in biochemical sciences.

[108]  L. Delbaere,et al.  Crystal structure of Escherichia coli phosphoenolpyruvate carboxykinase: a new structural family with the P-loop nucleoside triphosphate hydrolase fold. , 1996, Journal of molecular biology.

[109]  E. Egelman Homomorphous hexameric helicases: tales from the ring cycle. , 1996, Structure.

[110]  L. Bird,et al.  Helicases: a unifying structural theme? , 1998, Current opinion in structural biology.

[111]  Adenosine 5'-diphosphate binding and the active site of nucleoside diphosphate kinase. , 1994 .

[112]  M. Latterich,et al.  The AAA team: related ATPases with diverse functions. , 1998, Trends in cell biology.

[113]  Craig M. Ogata,et al.  Structural Analysis of Substrate Binding by the Molecular Chaperone DnaK , 1996, Science.

[114]  S. Doublié,et al.  Crystal structure of a bacteriophage T7 DNA replication complex at 2.2 Å resolution , 1998, Nature.

[115]  Susan S. Taylor,et al.  A template for the protein kinase family. , 1993, Trends in biochemical sciences.

[116]  G. Schulz,et al.  Movie of the structural changes during a catalytic cycle of nucleoside monophosphate kinases. , 1995, Structure.

[117]  A. Goldberg,et al.  Sequence of the lon gene in Escherichia coli. A heat-shock gene which encodes the ATP-dependent protease La. , 1988, The Journal of biological chemistry.

[118]  A. Wojtczak,et al.  Apyrases (ATP diphosphohydrolases, EC 3.6.1.5): function and relationship to ATPases. , 1996, Biochimica et biophysica acta.