Linearity Aspects of High Power Amplification in GaN Transistors

Linearity (and its absence) is a major design constraint in practical high-frequency communication circuits, impacting both transmitter and receiver circuits. This chapter will introduce the general features of non-linearity and how it impacts circuit design, then dive into the origins of non-linearity in GaN devices specifically, detailing how it is modelled in the literature, and conclude with a discussion of designs at both the device level and circuit level which can help linearize systems based on GaN PAs.

[1]  H. Uhm,et al.  Cellular and molecular responses of Neurospora crassa to non-thermal plasma at atmospheric pressure , 2012 .

[2]  V. Paidi,et al.  High linearity GaN HEMT power amplifier with pre-linearization gate diode , 2004, Proceedings. IEEE Lester Eastman Conference on High Performance Devices, 2004..

[3]  U. Mishra,et al.  The impact of surface states on the DC and RF characteristics of AlGaN/GaN HFETs , 2001 .

[4]  Hiroshi Yamamoto,et al.  Linearity Improvement of GaN HEMT for RF Power Amplifiers , 2013, 2013 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS).

[5]  Xing Zhou,et al.  A Compact Model for Generic MIS-HEMTs Based on the Unified 2DEG Density Expression , 2014, IEEE Transactions on Electron Devices.

[6]  Barrie Gilbert,et al.  The multi-tanh principle: a tutorial overview , 1998, IEEE J. Solid State Circuits.

[7]  B. Ridley Polar-optical-phonon and electron-electron scattering in large-bandgap semiconductors , 1998 .

[8]  L Dunleavy,et al.  Modeling GaN: Powerful but Challenging , 2010, IEEE Microwave Magazine.

[9]  Debdeep Jena,et al.  Effect of Optical Phonon Scattering on the Performance of GaN Transistors , 2010, IEEE Electron Device Letters.

[10]  Kazuya Yamamoto,et al.  A WCDMA Multiband Power Amplifier Module With Si-CMOS/GaAs-HBT Hybrid Power-Stage Configuration , 2016, IEEE Transactions on Microwave Theory and Techniques.

[11]  H. Morkoç,et al.  Polarization in GaN Based Heterostructures and Heterojunction Field Effect Transistors (HFETs) , 2008 .

[12]  Piet Wambacq,et al.  Distortion analysis of analog integrated circuits , 1998 .

[13]  W. Curtice,et al.  A Nonlinear GaAs FET Model for Use in the Design of Output Circuits for Power Amplifiers , 1985 .

[14]  Tangsheng Chen,et al.  High-Linearity AlGaN/GaN FinFETs for Microwave Power Applications , 2017, IEEE Electron Device Letters.

[15]  Gaudenzio Meneghesso,et al.  Trapping phenomena in AlGaN/GaN HEMTs: a study based on pulsed and transient measurements , 2013 .

[16]  Evelyn N. Wang,et al.  Experimental Characterization of the Thermal Time Constants of GaN HEMTs Via Micro-Raman Thermometry , 2017, IEEE Transactions on Electron Devices.

[17]  T. Fjeldly,et al.  A Physics-Based Analytical Model for 2DEG Charge Density in AlGaN/GaN HEMT Devices , 2011, IEEE Transactions on Electron Devices.

[18]  Tamotsu Hashizume,et al.  Current Stability in Multi-Mesa-Channel AlGaN/GaN HEMTs , 2013, IEEE Transactions on Electron Devices.

[19]  D. Schreurs,et al.  Large-signal modelling and comparison of AlGaN/GaN HEMTs and SiC MESFETs , 2006, 2006 Asia-Pacific Microwave Conference.

[20]  A. Schmitz,et al.  Deeply-scaled self-aligned-gate GaN DH-HEMTs with ultrahigh cutoff frequency , 2011, 2011 International Electron Devices Meeting.

[21]  R. Quéré,et al.  An Electrothermal Model for AlGaN/GaN Power HEMTs Including Trapping Effects to Improve Large-Signal Simulation Results on High VSWR , 2007, IEEE Transactions on Microwave Theory and Techniques.

[22]  K. Bagnall Device-level thermal analysis of GaN-based electronics , 2013 .

[23]  Ujwal Radhakrishna A compact transport and charge model for GaN-based high electron mobility transistors for RF applications , 2013 .

[24]  Keisuke Shinohara,et al.  Scaling of GaN HEMTs and Schottky Diodes for Submillimeter-Wave MMIC Applications , 2013, IEEE Transactions on Electron Devices.

[25]  W. Pribble,et al.  Thermal analysis and its application to high power GaN HEMT amplifiers , 2009, 2009 IEEE MTT-S International Microwave Symposium Digest.

[26]  Slim Boumaiza,et al.  Linearity of GaN HEMT RF power amplifiers - a circuit perspective , 2012, 2012 IEEE/MTT-S International Microwave Symposium Digest.

[27]  C. McGuire,et al.  55% PAE and High Power Ka-Band GaN HEMTs With Linearized Transconductance via $\hbox{n}+$ GaN Source Contact Ledge , 2008, IEEE Electron Device Letters.

[28]  Y. Chauhan,et al.  Effect of access region and field plate on capacitance behavior of GaN HEMT , 2015, 2015 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC).

[29]  Daniel Piedra,et al.  Large signal linearity enhancement of AlGaN/GaN high electron mobility transistors by device-level Vt engineering for transconductance compensation , 2017, 2017 IEEE International Electron Devices Meeting (IEDM).

[30]  Fadhel M. Ghannouchi,et al.  A New GaN HEMT Equivalent Circuit Modeling Technique Based on X-Parameters , 2016, IEEE Transactions on Microwave Theory and Techniques.

[31]  G. Maracas,et al.  Frequency-dependent electrical characteristics of GaAs MESFETs , 1990 .

[32]  S. Denbaars,et al.  AlGaN/GaN MODFETs with low ohmic contact resistances by source/drain n/sup +/ re-growth , 1998, Compound Semiconductors 1997. Proceedings of the IEEE Twenty-Fourth International Symposium on Compound Semiconductors.

[33]  G. Branner,et al.  An improved empirical large-signal model for high-power GaN HEMTs including self-heating and charge-trapping effects , 2009, 2009 IEEE MTT-S International Microwave Symposium Digest.

[34]  Yu Cao,et al.  MBE-Regrown Ohmics in InAlN HEMTs With a Regrowth Interface Resistance of 0.05 $\Omega\cdot\hbox{mm}$ , 2012, IEEE Electron Device Letters.

[35]  Claudia Felser,et al.  Hard x-ray photoelectron spectroscopy of chalcopyrite solar cell components , 2012 .

[36]  Density-dependent electron transport and precise modeling of GaN high electron mobility transistors , 2015, 1508.07050.

[37]  S. Rajan,et al.  Electron gas dimensionality engineering in AlGaN/GaN high electron mobility transistors using polarization , 2012 .

[38]  Towhid A. Chowdhury Study of Self-Heating Effects in GaN HEMTs , 2013 .

[39]  Sudip Ghosh,et al.  Capacitance Modeling in Dual Field-Plate Power GaN HEMT for Accurate Switching Behavior , 2016, IEEE Transactions on Electron Devices.

[40]  K. Matsunaga,et al.  Novel AlGaN/GaN dual-field-plate FET with high gain, increased linearity and stability , 2005, IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest..

[41]  A. Katz Linearization: reducing distortion in power amplifiers , 2001 .

[42]  Keisuke Shinohara,et al.  GaN-Based Field-Effect Transistors With Laterally Gated Two-Dimensional Electron Gas , 2018, IEEE Electron Device Letters.

[43]  Charles Baylis Improved Techniques for Nonlinear Electrothermal FET Modeling and Measurement Validation , 2007 .

[44]  S. Keller,et al.  Influence of the dynamic access resistance in the g/sub m/ and f/sub T/ linearity of AlGaN/GaN HEMTs , 2005, IEEE Transactions on Electron Devices.

[45]  A. Khakifirooz,et al.  A Simple Semiempirical Short-Channel MOSFET Current–Voltage Model Continuous Across All Regions of Operation and Employing Only Physical Parameters , 2009, IEEE Transactions on Electron Devices.

[46]  Wan-Jong Kim,et al.  Linearizing Power Amplifiers Using Digital Predistortion, EDA Tools and Test Hardware , 2004 .

[47]  P. Vogl,et al.  nextnano: General Purpose 3-D Simulations , 2007, IEEE Transactions on Electron Devices.

[48]  R. C. Clarke,et al.  The Super-Lattice Castellated Field Effect Transistor (SLCFET): A novel high performance Transistor topology ideal for RF switching , 2014, 2014 IEEE International Electron Devices Meeting.