Elongation factors in protein biosynthesis.

Translation elongation factors are the workhorses of protein synthesis on the ribosome. They assist in elongating the nascent polypeptide chain by one amino acid at a time. The general biochemical outline of the translation elongation cycle is well preserved in all biological kingdoms. Recently, there has been structural insight into the effects of antibiotics on elongation. These structures provide a scaffold for understanding the biological function of elongation factors before high-resolution structures of such factors in complex with ribosomes are obtained. Very recent structures of the yeast translocation factor and its complex with the antifungal drug sordarin reveal an unexpected conformational flexibility that might be crucial to the mechanism of translocation.

[1]  Joachim Frank,et al.  A ratchet-like inter-subunit reorganization of the ribosome during translocation , 2000, Nature.

[2]  J. Ballesta,et al.  Three‐dimensional cryo‐electron microscopy localization of EF2 in the Saccharomyces cerevisiae 80S ribosome at 17.5 Å resolution , 2000, The EMBO journal.

[3]  W. Kabsch,et al.  The Ras-RasGAP complex: structural basis for GTPase activation and its loss in oncogenic Ras mutants. , 1997, Science.

[4]  A. Liljas,et al.  The structure of elongation factor G in complex with GDP: conformational flexibility and nucleotide exchange. , 1996, Structure.

[5]  F. Jurnak,et al.  Structure of an EF-Tu complex with a thiazolyl peptide antibiotic determined at 2.35 A resolution: atomic basis for GE2270A inhibition of EF-Tu. , 2000, Biochemistry.

[6]  M. R. Parsons,et al.  Crystal structure of intact elongation factor EF-Tu from Escherichia coli in GDP conformation at 2.05 A resolution. , 1999, Journal of molecular biology.

[7]  R. Hilgenfeld,et al.  Inhibitory mechanisms of antibiotics targeting elongation factor Tu. , 2002, Current protein & peptide science.

[8]  O. Uhlenbeck,et al.  Uniform Binding of Aminoacyl-tRNAs to Elongation Factor Tu by Thermodynamic Compensation , 2001, Science.

[9]  Mohammad Reza Ahmadian,et al.  Confirmation of the arginine-finger hypothesis for the GAP-stimulated GTP-hydrolysis reaction of Ras , 1997, Nature Structural Biology.

[10]  S. Sprang,et al.  Structures of active conformations of Gi alpha 1 and the mechanism of GTP hydrolysis. , 1994, Science.

[11]  M. Heel,et al.  Ribosome interactions of aminoacyl-tRNA and elongation factor Tu in the codon-recognition complex , 2002, Nature Structural Biology.

[12]  S Thirup,et al.  Helix unwinding in the effector region of elongation factor EF-Tu-GDP. , 1996, Structure.

[13]  P. Sigler,et al.  Crystal structure of the EF-Tu˙EF-Ts complex from Thermus thermophilus , 1997, Nature Structural Biology.

[14]  S. Pestka,et al.  Molecular mechanisms of protein biosynthesis , 1977 .

[15]  J. Nyborg,et al.  Crystal structures of nucleotide exchange intermediates in the eEF1A–eEF1Bα complex , 2001, Nature Structural Biology.

[16]  Terri Goss Kinzy,et al.  Two crystal structures demonstrate large conformational changes in the eukaryotic ribosomal translocase , 2003, Nature Structural Biology.

[17]  M. Sprinzl,et al.  Limited proteolysis and amino acid replacements in the effector region of Thermus thermophilus elongation factor Tu. , 1996, European journal of biochemistry.

[18]  J. Nyborg,et al.  The crystal structure of elongation factor EF-Tu from Thermus aquaticus in the GTP conformation. , 1993, Structure.

[19]  Rolf Hilgenfeld,et al.  An α to β conformational switch in EF-Tu , 1996 .

[20]  B. Clark,et al.  Site-directed mutagenesis of Arg58 and Asp86 of elongation factor Tu from Escherichia coli: effects on the GTPase reaction and aminoacyl-tRNA binding. , 1995, Protein engineering.

[21]  A. Parmeggiani,et al.  EF-Tu, a GTPase odyssey. , 1998, Biochimica et biophysica acta.

[22]  J Frank,et al.  Visualization of elongation factor G on the Escherichia coli 70S ribosome: the mechanism of translocation. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[23]  N. Sonenberg,et al.  Translational control of gene expression , 2000 .

[24]  H. Weissbach,et al.  6 – Factors Involved in the Transfer of Aminoacyl-tRNA to the Ribosome , 1977 .

[25]  J. Nyborg,et al.  Structural Basis for Nucleotide Exchange and Competition with tRNA in the Yeast Elongation Factor Complex eEF1A:eEF1Bα , 2000 .

[26]  S Thirup,et al.  The crystal structure of Cys-tRNACys-EF-Tu-GDPNP reveals general and specific features in the ternary complex and in tRNA. , 1999, Structure.

[27]  A. Parmeggiani,et al.  Substitution of histidine-84 and the GTPase mechanism of elongation factor Tu. , 1991, Biochemistry.

[28]  L. Vitagliano,et al.  The crystal structure of Sulfolobus solfataricus elongation factor 1α in complex with GDP reveals novel features in nucleotide binding and exchange , 2001, The EMBO journal.

[29]  F. Jurnak,et al.  Relative affinities of all Escherichia coli aminoacyl-tRNAs for elongation factor Tu-GTP. , 1984, The Journal of biological chemistry.

[30]  J. Nyborg,et al.  3 The Protein Biosynthesis, Elongation Cycle , 2000 .

[31]  Harry F Noller,et al.  Mapping the Position of Translational Elongation Factor EF-G in the Ribosome by Directed Hydroxyl Radical Probing , 1998, Cell.

[32]  M Kjeldgaard,et al.  Macromolecular mimicry , 2000, The EMBO journal.

[33]  S. Sprang,et al.  Structure of RGS4 Bound to AlF4 −-Activated Giα1: Stabilization of the Transition State for GTP Hydrolysis , 1997, Cell.

[34]  Joachim Frank,et al.  EF-G-dependent GTP hydrolysis induces translocation accompanied by large conformational changes in the 70S ribosome , 1999, Nature Structural Biology.

[35]  H. Kalbitzer,et al.  Substrate-assisted catalysis as a mechanism for GTP hydrolysis of p21ras and other GTP-binding proteins , 1995, Nature Structural Biology.

[36]  G. Siegal,et al.  The solution structure of the guanine nucleotide exchange domain of human elongation factor 1beta reveals a striking resemblance to that of EF-Ts from Escherichia coli. , 1999, Structure.

[37]  L. Bosch,et al.  The structural and functional basis for the kirromycin resistance of mutant EF‐Tu species in Escherichia coli. , 1994, The EMBO journal.

[38]  Joachim Frank,et al.  Cryo‐EM reveals an active role for aminoacyl‐tRNA in the accommodation process , 2002, The EMBO journal.

[39]  G. Janssen,et al.  The subunit structure of elongation factor 1 from Artemia. Why two alpha-chains in this complex? , 1994, The Journal of biological chemistry.

[40]  A. Liljas,et al.  Three‐dimensional structure of the ribosomal translocase: elongation factor G from Thermus thermophilus. , 1994, The EMBO journal.

[41]  Michael Wulff,et al.  The structure of the Escherichia coli EF-Tu· EF-Ts complex at 2.5 Å resolution , 1996, Nature.

[42]  A. Liljas,et al.  Structure of a mutant EF-G reveals domain III and possibly the fusidic acid binding site. , 2000, Journal of molecular biology.

[43]  R. Hilgenfeld,et al.  Crystal structure of active elongation factor Tu reveals major domain rearrangements , 1993, Nature.

[44]  L. Bosch,et al.  Antibiotic resistance mechanisms of mutant EF-Tu species in Escherichia coli. , 1995, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[45]  S Thirup,et al.  Crystal Structure of the Ternary Complex of Phe-tRNAPhe, EF-Tu, and a GTP Analog , 1995, Science.

[46]  R. Hilgenfeld,et al.  Conformational Change of Elongation Factor Tu (EF-Tu) Induced by Antibiotic Binding , 2001, The Journal of Biological Chemistry.

[47]  J. Nyborg,et al.  Isolation, crystallization and X‐ray analysis of the quaternary complex of Phe‐tRNAPhe, EF‐Tu, a GTP analog and kirromycin , 1996, FEBS letters.

[48]  T. Steitz,et al.  The crystal structure of elongation factor G complexed with GDP, at 2.7 A resolution. , 1994, The EMBO journal.

[49]  R. Brimacombe,et al.  Visualization of elongation factor Tu on the Escherichia coli ribosome , 1997, Nature.

[50]  D. Hughes,et al.  Mutations to kirromycin resistance occur in the interface of domains I and III of EF‐Tu·GTP , 1994, FEBS letters.