Tail Asymptotics for a Retrial Queue with Bernoulli Schedule

In this paper, we study the asymptotic behavior of the tail probability of the number of customers in the steady-state $M/G/1$ retrial queue with Bernoulli schedule, under the assumption that the service time distribution has a regularly varying tail. Detailed tail asymptotic properties are obtained for the (conditional and unconditional) probability of the number of customers in the (priority) queue, orbit and system, respectively.

[1]  W. Feller,et al.  An Introduction to Probability Theory and Its Applications, Vol. II , 1972, The Mathematical Gazette.

[2]  H. Masuyama Subexponential tail equivalence of the queue length distributions of BMAP/GI/1 queues with and without retrials , 2013, 1310.4608.

[3]  Sung-Seok Ko,et al.  Tail Asymptotics for the Queue Size Distribution in an M/G/1 Retrial Queue , 2007, Journal of Applied Probability.

[4]  Jeongsim Kim TAIL ASYMPTOTICS FOR THE QUEUE SIZE DISTRIBUTION IN AN M X /G/1 RETRIAL QUEUE , 2015 .

[5]  Gennadi Falin,et al.  A survey of retrial queues , 1990, Queueing Syst. Theory Appl..

[6]  Jesus R. Artalejo,et al.  On the single server retrial queue with priority customers , 1993, Queueing Syst. Theory Appl..

[7]  Jesús R. Artalejo,et al.  Retrial Queueing Systems , 2008 .

[8]  Bin Liu,et al.  Tail asymptotics for M/M/c retrial queues with non-persistent customers , 2012, Oper. Res..

[9]  M. Meerschaert Regular Variation in R k , 1988 .

[10]  Liming Liu,et al.  Tail asymptotics for the queue length in an M/G/1 retrial queue , 2006, Queueing Syst. Theory Appl..

[11]  Bara Kim,et al.  Tail asymptotics for the queue size distribution in the MAP/G/1 retrial queue , 2010, Queueing Syst. Theory Appl..

[12]  Jie Min,et al.  Refined tail asymptotic properties for the $$M^X/G/1$$ retrial queue , 2018, Queueing Systems.

[13]  Kouji Yamamuro,et al.  The queue length in an M/G/1 batch arrival retrial queue , 2012, Queueing Syst. Theory Appl..

[14]  Bara Kim,et al.  Tail asymptotics of the queue size distribution in the M/M/m retrial queue , 2012, J. Comput. Appl. Math..

[15]  Yiqiang Q. Zhao,et al.  Second Order Asymptotic Properties for the Tail Probability of the Number of Customers in the M/G/1 Retrial Queue , 2018 .

[16]  J. Grandell Mixed Poisson Processes , 1997 .

[17]  Bara Kim,et al.  A survey of retrial queueing systems , 2015, Annals of Operations Research.

[18]  Jesús R. Artalejo,et al.  A classified bibliography of research on retrial queues: Progress in 1990–1999 , 1999 .

[19]  Jesus R. Artalejo,et al.  Accessible bibliography on retrial queues: Progress in 2000-2009 , 2010, Math. Comput. Model..

[20]  Bara Kim,et al.  Regularly varying tail of the waiting time distribution in M/G/1 retrial queue , 2010, Queueing Syst. Theory Appl..

[21]  Tuan Phung-Duc,et al.  Asymptotics of queue length distributions in priority retrial queues , 2018, Perform. Evaluation.

[22]  Hui Li,et al.  Geo/G/1 discrete time retrial queue with Bernoulli schedule , 1998, Eur. J. Oper. Res..

[23]  Bin Liu,et al.  Tail asymptotics of the waiting time and the busy period for the $${{\varvec{M/G/1/K}}}$$ queues with subexponential service times , 2014, Queueing Syst. Theory Appl..

[24]  Vidyadhar G. Kulkarni,et al.  Retrial queues revisited , 1998 .

[25]  K. Sigman,et al.  Sampling at subexponential times, with queueing applications , 1999 .

[26]  Bong Dae Choi,et al.  Single server retrial queues with priority calls , 1999 .

[27]  S. Foss,et al.  An Introduction to Heavy-Tailed and Subexponential Distributions , 2011 .

[28]  Bong D. Choi,et al.  The M/G/1 retrial queue with bernoulli schedule , 1990, Queueing Syst. Theory Appl..

[29]  Bin Liu,et al.  Analyzing retrial queues by censoring , 2010, Queueing Syst. Theory Appl..

[30]  Jesús R. Artalejo,et al.  Accessible bibliography on retrial queues , 1999 .

[31]  J. Teugels,et al.  On the asymptotic behaviour of the distributions of the busy period and service time in M/G/1 , 1980, Journal of Applied Probability.

[32]  Tuan Phung-Duc,et al.  Single server retrial queues with two way communication , 2013 .

[33]  J. Templeton Retrial queues , 1999 .

[34]  J. Corcoran Modelling Extremal Events for Insurance and Finance , 2002 .

[35]  Bara Kim,et al.  Exact tail asymptotics for the M/M/m retrial queue with nonpersistent customers , 2012, Oper. Res. Lett..

[36]  Ivan Atencia,et al.  A single-server retrial queue with general retrial times and Bernoulli schedule , 2005, Appl. Math. Comput..