Generating relativistic pseudo-potentials with explicit incorporation of semi-core states using APE, the Atomic Pseudo-potentials Engine

We present a computer package designed to generate and test norm-conserving pseudo-potentials within Density Functional Theory. The generated pseudo-potentials can be either non-relativistic, scalar relativistic or fully relativistic and can explicitly include semi-core states. A wide range of exchange–correlation functionals is included. Program summary

[1]  Leonard Kleinman,et al.  Efficacious Form for Model Pseudopotentials , 1982 .

[2]  Steven G. Louie,et al.  Nonlinear ionic pseudopotentials in spin-density-functional calculations , 1982 .

[3]  Scheffler,et al.  Ghost states for separable, norm-conserving, Iab initioP pseudopotentials. , 1990, Physical review. B, Condensed matter.

[4]  Hamann Generalized norm-conserving pseudopotentials. , 1989, Physical review. B, Condensed matter.

[5]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[6]  李幼升,et al.  Ph , 1989 .

[7]  D. Hamann,et al.  Norm-Conserving Pseudopotentials , 1979 .

[8]  Martins,et al.  Efficient pseudopotentials for plane-wave calculations. , 1991, Physical review. B, Condensed matter.

[9]  R. Dreizler,et al.  Density-Functional Theory , 1990 .

[10]  M. Scheffler,et al.  Ab initio pseudopotentials for electronic structure calculations of poly-atomic systems using density-functional theory , 1998, cond-mat/9807418.

[11]  Johnson,et al.  Modified Broyden's method for accelerating convergence in self-consistent calculations. , 1988, Physical review. B, Condensed matter.

[12]  S. Goedecker,et al.  Relativistic separable dual-space Gaussian pseudopotentials from H to Rn , 1998, cond-mat/9803286.

[13]  Eberhard Engel,et al.  Relativistic extension of the Troullier-Martins scheme: Accurate pseudopotentials for transition-metal elements , 2001 .

[14]  D. R. Hamann,et al.  Pseudopotentials that work: From H to Pu , 1982 .

[15]  R. Parr Density-functional theory of atoms and molecules , 1989 .

[16]  D. Anderson,et al.  Algorithms for minimization without derivatives , 1974 .

[17]  D. Vanderbilt,et al.  Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. , 1990, Physical review. B, Condensed matter.

[18]  John J. Hopfield,et al.  Chemically Motivated Pseudopotential for Sodium , 1973 .

[19]  Matthieu Verstraete,et al.  First-principles computation of material properties: the ABINIT software project , 2002 .

[20]  Shirley,et al.  Extended norm-conserving pseudopotentials. , 1989, Physical review. B, Condensed matter.

[21]  J. Martins,et al.  A straightforward method for generating soft transferable pseudopotentials , 1990 .

[22]  F. Nogueira,et al.  A primer in density functional theory , 2003 .

[23]  Jorge M. Pacheco,et al.  First-principles norm-conserving pseudopotential with explicit incorporation of semicore states , 2003 .

[24]  Nicola A. Hill,et al.  Self-consistent treatment of spin-orbit coupling in solids using relativistic fully separable ab initio pseudopotentials , 2001 .

[25]  Scheffler,et al.  Analysis of separable potentials. , 1991, Physical review. B, Condensed matter.

[26]  Matthias Scheffler,et al.  Pseudopotential study of binding properties of solids within generalized gradient approximations: The role of core-valence exchange-correlation. , 1998 .

[27]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[28]  D. Koelling,et al.  A technique for relativistic spin-polarised calculations , 1977 .

[29]  G. Kerker,et al.  Non-singular atomic pseudopotentials for solid state applications , 1980 .

[30]  D. Sánchez-Portal,et al.  The SIESTA method for ab initio order-N materials simulation , 2001, cond-mat/0111138.

[31]  H. Appel,et al.  octopus: a tool for the application of time‐dependent density functional theory , 2006 .

[32]  L. Hedin,et al.  A local exchange-correlation potential for the spin polarized case. i , 1972 .

[33]  Emily A. Carter,et al.  Spin-dependent pseudopotentials , 1998 .

[34]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[35]  Emily A. Carter,et al.  Spin-Dependent Pseudopotentials in the Solid State Environment , 2003 .

[36]  Teter,et al.  Separable dual-space Gaussian pseudopotentials. , 1996, Physical review. B, Condensed matter.

[37]  Á. Rubio,et al.  octopus: a first-principles tool for excited electron-ion dynamics. , 2003 .