Hartley, cosine and sine fractional transforms over Finite Fields

We introduce finite field versions of fractional Hartley, sine and cosine types 1 and 4 transforms using a matrix function approach. The proposed definitions employ a finite field extension of matrix functions, which does not require the construction of an eigenvector set of the corresponding transform. We also present a relationship between the Fourier and the Hartley fractional matrices and make a preliminary discussion concerning application scenarios for the developed theory.

[1]  B. Dickinson,et al.  Eigenvectors and functions of the discrete Fourier transform , 1982 .

[2]  Luís B. Almeida,et al.  The fractional Fourier transform and time-frequency representations , 1994, IEEE Trans. Signal Process..

[3]  A. N. Kauffman,et al.  Trigonometry in finite fields and a new Hartley transform , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[4]  S. Pei,et al.  Discrete fractional Hartley and Fourier transforms , 1998 .

[5]  Cagatay Candan,et al.  The discrete fractional Fourier transform , 2000, IEEE Trans. Signal Process..

[6]  Soo-Chang Pei,et al.  The discrete fractional cosine and sine transforms , 2001, IEEE Trans. Signal Process..

[7]  K. Conrad,et al.  Finite Fields , 2018, Series and Products in the Development of Mathematics.

[8]  Nicholas J. Higham,et al.  Functions of matrices - theory and computation , 2008 .

[9]  Soo-Chang Pei,et al.  Closed-Form Orthogonal DFT Eigenvectors Generated by Complete Generalized Legendre Sequence , 2008, IEEE Transactions on Circuits and Systems I: Regular Papers.

[10]  N. Higham Functions Of Matrices , 2008 .

[11]  Vassil S. Dimitrov,et al.  Fragile watermarking using finite field trigonometrical transforms , 2009, Signal Process. Image Commun..

[12]  Soo-Chang Pei,et al.  Closed-Form Orthogonal Number Theoretic Transform Eigenvectors and the Fast Fractional NTT , 2011, IEEE Transactions on Signal Processing.

[13]  D. Panario,et al.  The eigenstructure of finite field trigonometric transforms , 2011 .

[14]  Juliano B. Lima,et al.  The fractional Fourier transform over finite fields , 2012, Signal Process..