A simple triangular finite element for nonlinear thin shells: statics, dynamics and anisotropy

[1]  Sergio Pellegrino,et al.  Nonlinear dynamic analysis of creased shells , 2016 .

[2]  Rogelio Ortigosa,et al.  On a tensor cross product based formulation of large strain solid mechanics , 2016 .

[3]  Frank Diederich,et al.  The Non Linear Field Theories Of Mechanics , 2016 .

[4]  Nicole Propst,et al.  Mathematical Foundations Of Elasticity , 2016 .

[5]  Antje Baer,et al.  Direct Methods In The Calculus Of Variations , 2016 .

[6]  P. Pimenta,et al.  Generalization of the C1 TUBA plate finite elements to the geometrically exact Kirchhoff-Love shell model , 2015 .

[7]  P. Pimenta,et al.  Meshless implementation of the geometrically exact Kirchhoff–Love shell theory , 2014 .

[8]  M. Arroyo,et al.  Nonlinear manifold learning for meshfree finite deformation thin‐shell analysis , 2013 .

[9]  Fehmi Cirak,et al.  Subdivision shells with exact boundary control and non‐manifold geometry , 2011 .

[10]  Natalie Stranghöner,et al.  Membranstrukturen mit nicht-linearem anisotropem Materialverhalten - Aspekte der Materialprüfung und der numerischen Simulation , 2011 .

[11]  M. Arroyo,et al.  Thin shell analysis from scattered points with maximum‐entropy approximants , 2010, International Journal for Numerical Methods in Engineering.

[12]  Yuri Bazilevs,et al.  The bending strip method for isogeometric analysis of Kirchhoff–Love shell structures comprised of multiple patches , 2010 .

[13]  Daniel Balzani,et al.  Applications of anisotropic polyconvex energies: thin shells and biomechanics of arterial walls , 2010 .

[14]  Jörg Schröder,et al.  Poly-, quasi- and rank-one convexity in applied mechanics , 2010 .

[15]  E. Campello,et al.  A Fully Nonlinear Thin Shell Model of Kirchhoff-Love Type , 2010 .

[16]  Roland Wüchner,et al.  Isogeometric shell analysis with Kirchhoff–Love elements , 2009 .

[17]  Daniel Balzani,et al.  Construction of anisotropic polyconvex energies and applications to thin shells , 2009 .

[18]  P. Neff,et al.  Anisotropic polyconvex energies on the basis of crystallographic motivated structural tensors , 2008 .

[19]  Daniel Balzani,et al.  Analysis of thin shells using anisotropic polyconvex energy densities , 2008 .

[20]  T. Rabczuk,et al.  A meshfree thin shell method for non‐linear dynamic fracture , 2007 .

[21]  Giles Thomas,et al.  A new approach for the large deflection finite element analysis of isotropic and composite plates with arbitrary orientated stiffeners , 2007 .

[22]  G. Holzapfel,et al.  A polyconvex framework for soft biological tissues. Adjustment to experimental data , 2006 .

[23]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[24]  Y. Başar,et al.  Incompressibility at large strains and finite-element implementation , 2004 .

[25]  Peter Wriggers,et al.  A triangular finite shell element based on a fully nonlinear shell formulation , 2003 .

[26]  P. Neff,et al.  Invariant formulation of hyperelastic transverse isotropy based on polyconvex free energy functions , 2003 .

[27]  Jörg Schröder,et al.  Construction of polyconvex, anisotropic free‐energy functions , 2003 .

[28]  Christian Miehe,et al.  IUTAM Symposium on Computational Mechanics of Solid Materials at Large Strains , 2003 .

[29]  Joze Korelc,et al.  Multi-language and Multi-environment Generation of Nonlinear Finite Element Codes , 2002, Engineering with Computers.

[30]  Michael Ortiz,et al.  Fully C1‐conforming subdivision elements for finite deformation thin‐shell analysis , 2001, International Journal for Numerical Methods in Engineering.

[31]  Carlo Sansour,et al.  Families of 4-node and 9-node finite elements for a finite deformation shell theory. An assesment of hybrid stress, hybrid strain and enhanced strain elements , 2000 .

[32]  M. Mukhopadhyay,et al.  Finite element large deflection static analysis of shallow and deep stiffened shells , 1999 .

[33]  E. Ramm,et al.  Shear deformable shell elements for large strains and rotations , 1997 .

[34]  Joze Korelc,et al.  Automatic Generation of Finite-Element Code by Simultaneous Optimization of Expressions , 1997, Theor. Comput. Sci..

[35]  Yavuz Başar,et al.  Shear deformation models for large-strain shell analysis , 1997 .

[36]  E. Stein,et al.  A 4-node finite shell element for the implementation of general hyperelastic 3D-elasticity at finite strains , 1996 .

[37]  S. Antman Nonlinear problems of elasticity , 1994 .

[38]  D. Malkus,et al.  Mixed finite element methods—reduced and selective integration techniques: a unification of concepts , 1990 .

[39]  J. C. Simo,et al.  A CLASS OF MIXED ASSUMED STRAIN METHODS AND THE METHOD OF INCOMPATIBLE MODES , 1990 .

[40]  J. C. Simo,et al.  On a stress resultant geometrically exact shell model. Part III: computational aspects of the nonlinear theory , 1990 .

[41]  J. C. Simo,et al.  On a stress resultant geometrically exact shell model. Part II: the linear theory; computational aspects , 1989 .

[42]  J. C. Simo,et al.  On stress resultant geometrically exact shell model. Part I: formulation and optimal parametrization , 1989 .

[43]  J. P. Boehler,et al.  Introduction to the Invariant Formulation of Anisotropic Constitutive Equations , 1987 .

[44]  Reint Boer,et al.  Vektor- und Tensorrechnung für Ingenieure , 1982 .

[45]  T. Hughes,et al.  Finite Elements Based Upon Mindlin Plate Theory With Particular Reference to the Four-Node Bilinear Isoparametric Element , 1981 .

[46]  J. Boehler,et al.  A Simple Derivation of Representations for Non‐Polynomial Constitutive Equations in Some Cases of Anisotropy , 1979 .

[47]  J. Ball Convexity conditions and existence theorems in nonlinear elasticity , 1976 .

[48]  C. Truesdell,et al.  The Non-Linear Field Theories Of Mechanics , 1992 .