Turing Instability and Bifurcation in a Diffusion Predator-Prey Model with Beddington-DeAngelis Functional Response

In this paper, we consider a predator–prey model with Beddington–DeAngelis functional response with or without diffusion. For this system, we give a complete and rigorous analysis of the dynamics i...

[1]  Mingxin Wang,et al.  Stability and Hopf bifurcation for a prey-predator model with prey-stage structure and diffusion. , 2008, Mathematical biosciences.

[2]  Zhen Jin,et al.  Spatial dynamics in a predator-prey model with Beddington-DeAngelis functional response. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  Fengde Chen,et al.  Qualitative analysis of a predator–prey model with Holling type II functional response incorporating a constant prey refuge , 2010 .

[4]  M. Rosenzweig Paradox of Enrichment: Destabilization of Exploitation Ecosystems in Ecological Time , 1971, Science.

[5]  Wensheng Yang,et al.  Global asymptotical stability and persistent property for a diffusive predator–prey system with modified Leslie–Gower functional response , 2013 .

[6]  Vikas Rai,et al.  Diffusion-Driven Instabilities and Spatio-Temporal Patterns in an Aquatic predator-prey System with Beddington-Deangelis Type Functional Response , 2011, Int. J. Bifurc. Chaos.

[7]  Lei Zhang,et al.  Complex patterns in a predator-prey model with self and cross-diffusion , 2011 .

[8]  Wan-Tong Li,et al.  Hopf bifurcation and Turing instability in spatial homogeneous and inhomogeneous predator-prey models , 2011, Appl. Math. Comput..

[9]  Junjie Wei,et al.  Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system ✩ , 2009 .

[10]  Wonlyul Ko,et al.  Qualitative analysis of a predator-prey model with Holling type II functional response incorporating a prey refuge , 2006 .

[11]  De Wit A,et al.  Spatiotemporal dynamics near a codimension-two point. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[12]  Donald L. DeAngelis,et al.  A Model for Tropic Interaction , 1975 .

[13]  J. Beddington,et al.  Mutual Interference Between Parasites or Predators and its Effect on Searching Efficiency , 1975 .

[14]  Santabrata Chakravarty,et al.  Existence of spatiotemporal patterns in the reaction–diffusion predator–prey model incorporating prey refuge , 2016 .

[15]  Zhiqi Lu,et al.  Analysis of a predator–prey model with modified Holling–Tanner functional response and time delay , 2008 .

[16]  Lijuan Wang,et al.  Numerical simulation and qualitative analysis for a predator-prey model with B-D functional response , 2015, Math. Comput. Simul..

[17]  J. F. Gilliam,et al.  FUNCTIONAL RESPONSES WITH PREDATOR INTERFERENCE: VIABLE ALTERNATIVES TO THE HOLLING TYPE II MODEL , 2001 .

[18]  Shigui Ruan,et al.  Bifurcations in a predator–prey system of Leslie type with generalized Holling type III functional response☆ , 2014 .

[19]  Wan-Tong Li,et al.  Positive steady states of a diffusive predator–prey system with modified Holling–Tanner functional response☆ , 2010 .

[20]  Manoj Thakur,et al.  A density dependent delayed predator-prey model with Beddington-DeAngelis type function response incorporating a prey refuge , 2015, Commun. Nonlinear Sci. Numer. Simul..

[21]  Robert F. Luck,et al.  Evaluation of natural enemies for biological control: A behavioral approach , 1990 .

[22]  Ye Fan,et al.  Pattern formation of an epidemic model with cross diffusion , 2014, Appl. Math. Comput..

[23]  Lin Xue,et al.  Pattern formation in a predator–prey model with spatial effect , 2012 .

[24]  Gaihui Guo,et al.  Hopf bifurcation and steady-state bifurcation for an autocatalysis reaction–diffusion model , 2012 .

[25]  Leslie A. Real,et al.  The Kinetics of Functional Response , 1977, The American Naturalist.

[26]  Gaihui Guo,et al.  Multiplicity and uniqueness of positive solutions for a predator–prey model with B–D functional response☆ , 2010 .

[27]  Gang Huang,et al.  Global properties for virus dynamics model with Beddington-DeAngelis functional response , 2009, Appl. Math. Lett..

[28]  David J. Wollkind,et al.  Temperature-dependent predator-prey mite ecosystem on apple tree foliage , 1978 .

[29]  Xiaolin Li,et al.  Pattern formation and spatiotemporal chaos in a reaction–diffusion predator–prey system , 2015 .

[30]  Li Zhong,et al.  Stability analysis of a prey-predator model with holling type III response function incorporating a prey refuge , 2006, Appl. Math. Comput..

[31]  Chunxia Shen,et al.  Permanence and global attractivity of the food-chain system with Holling IV type functional response , 2007, Appl. Math. Comput..

[32]  Jinlin Shi,et al.  On a delayed nonautonomous ratio-dependent predator-prey model with Holling type functional response and diffusion , 2007, Appl. Math. Comput..

[33]  Sze-Bi Hsu,et al.  Global Stability for a Class of Predator-Prey Systems , 1995, SIAM J. Appl. Math..

[34]  L. Slobodkin,et al.  Community Structure, Population Control, and Competition , 1960, The American Naturalist.

[35]  Hopf bifurcations in general systems of Brusselator type , 2016 .

[36]  Jitsuro Sugie,et al.  On a predator-prey system of Holling type , 1997 .

[37]  Yang Kuang,et al.  Global qualitative analysis of a ratio-dependent predator–prey system , 1998 .

[38]  Yongli Song,et al.  Cross-diffusion induced spatiotemporal patterns in a predator–prey model with herd behavior , 2015 .

[39]  Jinde Cao,et al.  Effect of time delay on pattern dynamics in a spatial epidemic model , 2014, Physica A: Statistical Mechanics and its Applications.

[40]  M. Haque,et al.  Existence of complex patterns in the Beddington-DeAngelis predator-prey model. , 2012, Mathematical biosciences.

[41]  Wei Han,et al.  Hopf bifurcation analysis of a reaction–diffusion Sel'kov system , 2009 .

[42]  A. Turing The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[43]  Manoj Thakur,et al.  Dynamical analysis of a prey–predator model with Beddington–DeAngelis type function response incorporating a prey refuge , 2015 .

[44]  Ning Wang,et al.  Complex patterns in a space- and time-discrete predator-prey model with Beddington-DeAngelis functional response , 2017, Commun. Nonlinear Sci. Numer. Simul..

[45]  R Arditi,et al.  The biological control paradox. , 1991, Trends in ecology & evolution.

[46]  Tomasz W. Dłotko,et al.  Global Attractors in Abstract Parabolic Problems , 2000 .

[47]  Tao Wang Dynamics of an epidemic model with spatial diffusion , 2014, Physica A: Statistical Mechanics and its Applications.

[48]  D. DeAngelis,et al.  Effects of spatial grouping on the functional response of predators. , 1999, Theoretical population biology.

[49]  Mingxin Wang,et al.  Qualitative analysis of predator-prey models with Beddington-DeAngelis functional response and diffusion , 2005, Math. Comput. Model..

[50]  C. S. Holling Some Characteristics of Simple Types of Predation and Parasitism , 1959, The Canadian Entomologist.