ChromHMM: automating chromatin-state discovery and characterization

Chromatin state annotation using combinations of chromatin modification patterns has emerged as a powerful approach for discovering regulatory regions and their cell type specific activity patterns, and for interpreting disease-association studies1-5. However, the computational challenge of learning chromatin state models from large numbers of chromatin modification datasets in multiple cell types still requires extensive bioinformatics expertise making it inaccessible to the wider scientific community. To address this challenge, we have developed ChromHMM, an automated computational system for learning chromatin states, characterizing their biological functions and correlations with large-scale functional datasets, and visualizing the resulting genome-wide maps of chromatin state annotations.