EP-based kinematic control and adaptive fuzzy sliding-mode dynamic control for wheeled mobile robots

This paper proposes a complete control law comprising an evolutionary programming based kinematic control (EPKC) and an adaptive fuzzy sliding-mode dynamic control (AFSMDC) for the trajectory-tracking control of nonholonomic wheeled mobile robots (WMRs). The control gains for kinematic control (KC) are trained by evolutionary programming (EP). The proposed AFSMDC not only eliminates the chattering phenomenon in the sliding-mode control, but also copes with the system uncertainties and external disturbances. Additionally, the convergence of trajectory-tracking errors is proved by the Lyapunov stability theory. Computer simulations are presented to confirm the effectiveness of the proposed complete control law. Finally, real-time experiments are done in the test field to demonstrate the feasibility of real WMR maneuvers.

[1]  Yijia Cao Eigenvalue optimisation problems via evolutionary programming , 1997 .

[2]  Andon V. Topalov,et al.  Fuzzy-net control of non-holonomic mobile robot using evolutionary feedback-error-learning , 1998, Robotics Auton. Syst..

[3]  Jong-Hwan Kim,et al.  Sliding mode control for trajectory tracking of nonholonomic wheeled mobile robots , 1999, IEEE Trans. Robotics Autom..

[4]  Oscar Castillo,et al.  An intelligent hybrid approach for industrial quality control combining neural networks, fuzzy logic and fractal theory , 2004, Inf. Sci..

[5]  Zhao Lu,et al.  Adaptive feedback linearization control of chaotic systems via recurrent high-order neural networks , 2006, Inf. Sci..

[6]  Kenzo Nonami,et al.  Optimal two-degree-of-freedom fuzzy control for locomotion control of a hydraulically actuated hexapod robot , 2007, Inf. Sci..

[7]  Indra Narayan Kar,et al.  Design and implementation of an adaptive fuzzy logic-based controller for wheeled mobile robots , 2006, IEEE Transactions on Control Systems Technology.

[8]  Dongkyoung Chwa,et al.  Sliding-mode tracking control of nonholonomic wheeled mobile robots in polar coordinates , 2004, IEEE Transactions on Control Systems Technology.

[9]  Xin-Ping Guan,et al.  Observer-based adaptive control for uncertain time-delay systems , 2006, Inf. Sci..

[10]  Gautam Biswas,et al.  Hybrid fault adaptive control of a wheeled mobile robot , 2003 .

[11]  W.-S. Lin,et al.  Hierarchical fuzzy control for autonomous navigation of wheeled robots , 2005 .

[12]  Chen-Sheng Ting,et al.  An observer-based approach to controlling time-delay chaotic systems via Takagi-Sugeno fuzzy model , 2007, Inf. Sci..

[13]  Ahmad B. Rad,et al.  Indirect adaptive fuzzy sliding mode control: Part I: fuzzy switching , 2001, Fuzzy Sets Syst..

[14]  Guang-Hong Yang,et al.  State feedback control of continuous-time T-S fuzzy systems via switched fuzzy controllers , 2008, Inf. Sci..

[15]  Jaehong Park,et al.  Application of adaptive control to the fluctuation of engine speed at idle , 2007, Inf. Sci..

[16]  Guanrong Chen,et al.  Evolutionary programming Kalman filter , 2000, Inf. Sci..

[17]  Tarek Hamel,et al.  On robustness and precision of mobile robots missions , 2001, Autom..

[18]  Farzad Pourboghrat,et al.  Adaptive control of dynamic mobile robots with nonholonomic constraints , 2002, Comput. Electr. Eng..

[19]  K. D. Do,et al.  Global output-feedback path tracking of unicycle-type mobile robots , 2006 .

[20]  Yan-Jun Liu,et al.  Adaptive fuzzy control for a class of uncertain nonaffine nonlinear systems , 2007, Inf. Sci..

[21]  Weiliang Xu,et al.  Tracking control of uncertain dynamic nonholonomic system and its application to wheeled mobile robots , 2000, IEEE Trans. Robotics Autom..

[22]  Tzuu-Hseng S. Li,et al.  Design of interval type-2 fuzzy sliding-mode controller , 2008, Inf. Sci..

[23]  Stefan Preitl,et al.  PI-Fuzzy controllers for integral plants to ensure robust stability , 2007, Inf. Sci..

[24]  Jin Bae Park,et al.  Indirect adaptive control of nonlinear dynamic systems using self recurrent wavelet neural networks via adaptive learning rates , 2007, Inf. Sci..

[25]  Indra Narayan Kar,et al.  Simple neuron-based adaptive controller for a nonholonomic mobile robot including actuator dynamics , 2006, Neurocomputing.

[26]  Rong-Jong Wai,et al.  Adaptive fuzzy sliding-mode control for electrical servo drive , 2004, Fuzzy Sets Syst..

[27]  Chuan-Kai Lin Robust adaptive critic control of nonlinear systems using fuzzy basis function networks: An LMI approach , 2007, Inf. Sci..

[28]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[29]  Oscar Montiel,et al.  Experimental study of intelligent controllers under uncertainty using type-1 and type-2 fuzzy logic , 2007, Inf. Sci..

[30]  Marilena Vendittelli,et al.  WMR control via dynamic feedback linearization: design, implementation, and experimental validation , 2002, IEEE Trans. Control. Syst. Technol..

[31]  José Santos-Victor,et al.  Direct visual tracking control of remote cellular robots , 2006, Robotics Auton. Syst..

[32]  Fumio Miyazaki,et al.  A stable tracking control method for an autonomous mobile robot , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[33]  Edgar N. Sánchez,et al.  Combining fuzzy, PID and regulation control for an autonomous mini-helicopter , 2007, Inf. Sci..

[34]  Shuli Sun Designing approach on trajectory-tracking control of mobile robot , 2005 .

[35]  Frank L. Lewis,et al.  Control of a nonholonomic mobile robot using neural networks , 1998, IEEE Trans. Neural Networks.