CCE1: Decrease in the frequency of oceanic fronts and surface chlorophyll concentration in the California Current System during the 2014–2016 northeast Pacific warm anomalies

[1]  Mark D. Ohman,et al.  Mesozooplankton and particulate matter responses to a deep-water frontal system in the southern California Current System , 2012 .

[2]  Mati Kahru,et al.  Cyanobacterial blooms cause heating of the sea surface , 1993 .

[3]  R. Kudela,et al.  An unprecedented coastwide toxic algal bloom linked to anomalous ocean conditions , 2016, Geophysical research letters.

[4]  Alexander M. Chekalyuk,et al.  Mesoscale ocean fronts enhance carbon export due to gravitational sinking and subduction , 2017, Proceedings of the National Academy of Sciences.

[5]  M. Kahru,et al.  Influence of the 1997–98 El Niño on the surface chlorophyll in the California Current , 2000 .

[6]  R. Stanley,et al.  Annual cyclicity in export efficiency in the inner Southern California Bight , 2017 .

[7]  James D. Scott,et al.  Forcing of Multiyear Extreme Ocean Temperatures that Impacted California Current Living Marine Resources in 2016 , 2018 .

[8]  S. G. Marinone,et al.  Ocean-color variability in the Gulf of California: scales from days to ENSO , 2004 .

[9]  Adriana Huyer,et al.  The nature of the cold filaments in the California Current system , 1991 .

[10]  Jean-Francois Cayula,et al.  Geographic Window Sizes Applied to Remote Sensing Sea Surface Temperature Front Detection , 2002 .

[11]  Stephanie A. Henson,et al.  Observing climate change trends in ocean biogeochemistry: when and where , 2016, Global change biology.

[12]  M. Kahru,et al.  CCE II: Spatial and interannual variability in export efficiency and the biological pump in an eastern boundary current upwelling system with substantial lateral advection , 2018, Deep Sea Research Part I: Oceanographic Research Papers.

[13]  P. I. Miller,et al.  REVIEW: On the Front Line: frontal zones as priority at‐sea conservation areas for mobile marine vertebrates , 2014 .

[14]  M. Kahru,et al.  Ocean Color Chlorophyll Algorithms for SEAWIFS , 1998 .

[15]  Daniel L. Rudnick,et al.  Impacts of the 2015–2016 El Niño on the California Current System: Early assessment and comparison to past events , 2016 .

[16]  S. Litvin,et al.  Ocean fronts drive marine fishery production and biogeochemical cycling , 2015, Proceedings of the National Academy of Sciences.

[17]  Mark D. Ohman,et al.  Covariability of zooplankton gradients with glider-detected density fronts in the Southern California Current System , 2015 .

[18]  P. I. Miller,et al.  Frequent locations of oceanic fronts as an indicator of pelagic diversity: Application to marine protected areas and renewables , 2014 .

[19]  C. Gentemann,et al.  Satellite sea surface temperatures along the West Coast of the United States during the 2014–2016 northeast Pacific marine heat wave , 2017 .

[20]  Bryan A. Franz,et al.  Chlorophyll aalgorithms for oligotrophic oceans: A novel approach based on three‐band reflectance difference , 2012 .

[21]  Mark D. Ohman,et al.  Changes in zooplankton habitat, behavior, and acoustic scattering characteristics across glider-resolved fronts in the Southern California Current System , 2015 .

[22]  Timothy P. Mavor,et al.  Sea surface temperature fronts in the California Current System from geostationary satellite observations , 2006 .

[23]  Mati Kahru,et al.  Optimized Merger of Ocean Chlorophyll Algorithms of MODIS-Aqua and VIIRS , 2015, IEEE Geoscience and Remote Sensing Letters.

[24]  E. Hazen,et al.  Sensitivity of the California Current nutrient supply to wind, heat, and remote ocean forcing , 2015 .

[25]  Irina Koester,et al.  Biological Impacts of the 2013–2015 Warm-Water Anomaly in the Northeast Pacific: Winners, Losers, and the Future , 2016 .

[26]  R. Bernstein,et al.  California Current Eddy Formation: Ship, Air, and Satellite Results , 1977, Science.

[27]  Libe Washburn,et al.  The evolving structure of an upwelling filament , 1985 .

[28]  D. Rudnick,et al.  The 2014–2015 warming anomaly in the Southern California Current System observed by underwater gliders , 2016 .

[29]  R. Kudela,et al.  Trends in the surface chlorophyll of the California Current: Merging data from multiple ocean color satellites , 2012 .

[30]  J. Peterson,et al.  The pelagic ecosystem in the Northern California Current off Oregon during the 2014-2016 warm anomalies within the context of the past 20 years. , 2017, Journal of geophysical research. Oceans.

[31]  I. Belkin Observational studies of oceanic fronts , 2009 .

[32]  Peter Cornillon,et al.  Edge Detection Algorithm for SST Images , 1992 .

[33]  Thomas M. Smith,et al.  Daily High-Resolution-Blended Analyses for Sea Surface Temperature , 2007 .

[34]  Emanuele Di Lorenzo,et al.  Multi-year persistence of the 2014/15 North Pacific marine heatwave , 2016 .

[35]  R. Thunell,et al.  Centennial changes in North Pacific anoxia linked to tropical trade winds , 2014, Science.

[36]  E. Beier,et al.  Effects of the 2013-2016 warm anomalies on the California Current phytoplankton , 2017 .

[37]  N. Gruber,et al.  Local atmospheric forcing driving an unexpected California Current System response during the 2015–2016 El Niño , 2017 .

[38]  Nicholas A. Bond,et al.  Causes and impacts of the 2014 warm anomaly in the NE Pacific , 2015 .

[39]  M. Kahru,et al.  Spatial and temporal statistics of sea surface temperature and chlorophyll fronts in the California Current , 2012 .

[40]  M. Kahru,et al.  Pelagic community responses to a deep-water front in the California Current Ecosystem: overview of the A-Front Study , 2012 .