Dimensions and singular traces for spectral triples, with applications to fractals
暂无分享,去创建一个
[1] C. Tricot. Curves and Fractal Dimension , 1994 .
[2] Hideki Kosaki,et al. Generalized s-numbers of τ-measurable operators , 1986 .
[3] Michel L. Lapidus,et al. Generalized Minkowski Content, Spectrum of Fractal Drums, Fractal Strings and the Riemann-Zeta-Function , 1997 .
[4] T. Isola,et al. Singular Traces on Semifinite von Neumann Algebras , 1995 .
[5] Noncommutative Riemann Integration and Novikov–Shubin Invariants for Open Manifolds , 1998, math/9802015.
[6] Joseph C. Várilly,et al. Elements of Noncommutative Geometry , 2000 .
[7] A remark on trace properties of K-cycles , 1995, funct-an/9506003.
[8] Alain Connes,et al. Noncommutative geometry , 1988 .
[9] Kenneth S. Washington. The Talk of the Conference. , 1971 .
[10] S. Albeverio,et al. Singular Traces and Compact Operators , 1993, funct-an/9308001.
[11] Michel L. Lapidus,et al. The Riemann Zeta-Function and the One-Dimensional Weyl-Berry Conjecture for Fractal Drums , 1993 .
[12] Spectral flow and Dixmier traces , 2002, math/0205076.
[13] Fractals in Noncommutative Geometry , 2001, math/0102209.
[14] C. Bennett,et al. Interpolation of operators , 1987 .
[15] R. Longo. Mathematical Physics in Mathematics and Physics: Quantum and Operator Algebraic Aspects , 2001 .
[16] D. Gatzouras,et al. Lacunarity of self-similar and stochastically self-similar sets , 1999 .
[17] Traces on irregular ideals , 1989 .
[18] T. Fack,et al. On von Neumann spectral triples , 2000, math/0012233.
[19] T. Figiel,et al. Commutator structure of operator ideals , 2004 .
[20] R. Mauldin,et al. Random recursive constructions: asymptotic geometric and topological properties , 1986 .
[21] J. Kahane,et al. Ensembles parfaits et séries trigonométriques , 1963 .
[22] E. M. Semenov,et al. Symmetric Functionals and Singular Traces , 1998 .
[23] M. Lapidus,et al. Fractal Geometry and Number Theory: Complex Dimensions of Fractal Strings and Zeros of Zeta Functions , 2005 .
[24] J. Kigami,et al. Self-Similarity of Volume Measures for Laplacians¶on P. C. F. Self-Similar Fractals , 2001 .