Photometric classification of type Ia supernovae in the SuperNova Legacy Survey with supervised learning
暂无分享,去创建一个
N. Palanque-Delabrouille | J. Rich | A. Moller | C. Lidman | V. Ruhlmann-Kleider | C. Leloup | J. Neveu | R. Carlberg | C. Pritchet | Chris Pritchet | Anais Moller
[1] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[2] M. Phillips,et al. Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant , 1998, astro-ph/9805201.
[3] A. G. Alexei,et al. OBSERVATIONAL EVIDENCE FROM SUPERNOVAE FOR AN ACCELERATING UNIVERSE AND A COSMOLOGICAL CONSTANT , 1998 .
[4] R. Ellis,et al. Measurements of $\Omega$ and $\Lambda$ from 42 high redshift supernovae , 1998, astro-ph/9812133.
[5] J. Neill,et al. Gemini Spectroscopy of Supernovae from the Supernova Legacy Survey: Improving High-Redshift Supernova Selection and Classification , 2005, astro-ph/0509195.
[6] Peter E. Nugent,et al. The type Ia supernova SNLS-03D3bb from a super-Chandrasekhar-mass white dwarf star , 2006, Nature.
[7] B. Garilli,et al. Accurate photometric redshifts for the CFHT legacy survey calibrated using the VIMOS VLT deep survey , 2006, astro-ph/0603217.
[8] M. Sullivan,et al. SALT2: using distant supernovae to improve the use of type Ia supernovae as distance indicators , 2007, astro-ph/0701828.
[9] Berkeley,et al. SNLS Spectroscopy: Testing for Evolution in Type Ia Supernovae , 2007, 0709.0859.
[10] M. Sullivan,et al. Photometric calibration of the Supernova Legacy Survey fields , 2006, astro-ph/0610397.
[11] R. Ellis,et al. Verifying the Cosmological Utility of Type Ia Supernovae: Implications of a Dispersion in the Ultraviolet Spectra , 2007, 0710.3896.
[12] Mark Sullivan,et al. The Progenitors of Type Ia Supernovae , 2008, 0806.3729.
[13] M. Sullivan,et al. The Core-collapse rate from the Supernova Legacy Survey , 2009, 0904.1066.
[14] I. Hook,et al. Photometric redshifts for type Ia supernovae in the supernova legacy survey , 2009, 0911.1629.
[15] Donald W. Sweeney,et al. LSST Science Book, Version 2.0 , 2009, 0912.0201.
[16] M. Sullivan,et al. The ESO/VLT 3rd year Type Ia supernova data set from the supernova legacy survey , 2009, 0909.3316.
[17] N. S. Philip,et al. Results from the Supernova Photometric Classification Challenge , 2010, 1008.1024.
[18] I. Hook,et al. SUBLUMINOUS TYPE Ia SUPERNOVAE AT HIGH REDSHIFT FROM THE SUPERNOVA LEGACY SURVEY , 2010, 1011.4531.
[19] S. Jha,et al. Supernova Photometric Classification Challenge , 2010, 1001.5210.
[20] M. Sullivan,et al. The Supernova Legacy Survey 3-year sample: Type Ia supernovae photometric distances and cosmological constraints , , 2010, 1010.4743.
[21] I. Hook,et al. REAL-TIME ANALYSIS AND SELECTION BIASES IN THE SUPERNOVA LEGACY SURVEY , 2010, 1006.2254.
[22] Gaël Varoquaux,et al. Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..
[23] I. Hook,et al. Photometric selection of Type Ia supernovae in the Supernova Legacy Survey , 2011, 1109.0948.
[24] M. Sullivan,et al. SUPERNOVA SIMULATIONS AND STRATEGIES FOR THE DARK ENERGY SURVEY , 2011, 1111.1969.
[25] E. Ishida,et al. Kernel PCA for Type Ia supernovae photometric classification , 2012, 1201.6676.
[26] F. Feroz,et al. A simple and robust method for automated photometric classification of supernovae using neural networks , 2012, 1208.1264.
[27] M. Sullivan,et al. Improved cosmological constraints from a joint analysis of the SDSS-II and SNLS supernova samples , 2014, 1401.4064.
[28] Tianqi Chen,et al. XGBoost: A Scalable Tree Boosting System , 2016, KDD.
[29] O. Lahav,et al. PHOTOMETRIC SUPERNOVA CLASSIFICATION WITH MACHINE LEARNING , 2016, 1603.00882.