Linear summation of metabotropic postsynaptic potentials follows coactivation of neurogliaform interneurons

Summation of ionotropic receptor-mediated responses is critical in neuronal computation by shaping input-output characteristics of neurons. However, arithmetics of summation for metabotropic signals are not known. We characterized the combined ionotropic and metabotropic output of neocortical neurogliaform cells (NGFCs) using electrophysiological and anatomical methods. These experiments revealed that GABA receptors are activated up to 1.8 microns from release sites and confirmed coactivation of putative NGFCs in superficial cortical layers in vivo. Triple recordings from presynaptic NGFCs converging to a postsynaptic neuron revealed sublinear summation of ionotropic GABAA responses and linear summation of metabotropic GABAB responses. Based on a model combining distances of volume transmission from release sites and distributions of all NGFC axon terminals, we postulate that 2 to 3 NGFCs provide input to a point in the neuropil. We suggest that interactions of metabotropic GABAergic responses remain linear even if most superficial layer interneurons specialized to recruit GABAB receptors are simultaneously active.

[1]  S. Christ Inhibitory Control , 2021, Encyclopedia of Evolutionary Psychological Science.

[2]  Extracellular Space , 2020, Definitions.

[3]  Blake A. Richards,et al.  Distinct roles of parvalbumin and somatostatin interneurons in gating the synchronization of spike times in the neocortex , 2019, Science Advances.

[4]  G. Fishell,et al.  Four Unique Interneuron Populations Reside in Neocortical Layer 1 , 2018, The Journal of Neuroscience.

[5]  M. Terunuma Diversity of structure and function of GABAB receptors: a complexity of GABAB-mediated signaling , 2018, Proceedings of the Japan Academy. Series B, Physical and biological sciences.

[6]  Trygve E Bakken,et al.  h-Channels Contribute to Divergent Intrinsic Membrane Properties of Supragranular Pyramidal Neurons in Human versus Mouse Cerebral Cortex , 2018, Neuron.

[7]  Laurent Cognet,et al.  Unveiling the Extracellular Space of the Brain: From Super-resolved Microstructure to In Vivo Function , 2018, The Journal of Neuroscience.

[8]  Albert K. Lee,et al.  Inhibitory Control of Prefrontal Cortex by the Claustrum , 2018, Neuron.

[9]  Johannes J. Letzkus,et al.  Rapid Neuromodulation of Layer 1 Interneurons in Human Neocortex , 2018, Cell reports.

[10]  Ivan Raikov,et al.  Interneuronal mechanisms of hippocampal theta oscillations in a full-scale model of the rodent CA1 circuit , 2016, eLife.

[11]  Wenlian Lu,et al.  Electrical coupling regulates layer 1 interneuron microcircuit formation in the neocortex , 2016, Nature Communications.

[12]  R. MacKinnon,et al.  Cooperative regulation by G proteins and Na+ of neuronal GIRK2 K+ channels , 2016, eLife.

[13]  Rafael Yuste,et al.  Cooperative Subnetworks of Molecularly Similar Interneurons in Mouse Neocortex , 2016, Neuron.

[14]  Mark S. Cembrowski,et al.  Structured Dendritic Inhibition Supports Branch-Selective Integration in CA1 Pyramidal Cells , 2016, Neuron.

[15]  C. Felser,et al.  Negative magnetoresistance without well-defined chirality in the Weyl semimetal TaP , 2015, Nature Communications.

[16]  Kevin L. Briggman,et al.  Extracellular space preservation aids the connectomic analysis of neural circuits , 2015, eLife.

[17]  Alexander S. Ecker,et al.  Principles of connectivity among morphologically defined cell types in adult neocortex , 2015, Science.

[18]  Daniel Yakubovich,et al.  A Quantitative Model of the GIRK1/2 Channel Reveals That Its Basal and Evoked Activities Are Controlled by Unequal Stoichiometry of Gα and Gβγ , 2015, PLoS Comput. Biol..

[19]  James G. King,et al.  Reconstruction and Simulation of Neocortical Microcircuitry , 2015, Cell.

[20]  G. Knott,et al.  Ultrastructural analysis of adult mouse neocortex comparing aldehyde perfusion with cryo fixation , 2015, eLife.

[21]  Chris J. McBain,et al.  Neurogliaform cells in cortical circuits , 2015, Nature Reviews Neuroscience.

[22]  I. Vida,et al.  Compartmental distribution of GABAB receptor-mediated currents along the somatodendritic axis of hippocampal principal cells , 2015, Front. Synaptic Neurosci..

[23]  David J. Anderson,et al.  Ventromedial hypothalamic neurons control a defensive emotion state , 2015, eLife.

[24]  G. Tamás,et al.  Unitary GABAergic volume transmission from individual interneurons to astrocytes in the cerebral cortex , 2015, Brain Structure and Function.

[25]  Rafael Yuste,et al.  A blanket of inhibition: functional inferences from dense inhibitory connectivity , 2014, Current Opinion in Neurobiology.

[26]  Y. Kurachi,et al.  Membrane channels as integrators of G-protein-mediated signaling. , 2014, Biochimica et biophysica acta.

[27]  F. Conti,et al.  A quantitative analysis of cellular and synaptic localization of GAT-1 and GAT-3 in rat neocortex , 2013, Brain Structure and Function.

[28]  Terrence J. Sejnowski,et al.  VolRoverN: Enhancing Surface and Volumetric Reconstruction for Realistic Dynamical Simulation of Cellular and Subcellular Function , 2013, Neuroinformatics.

[29]  B. Hangya,et al.  Distinct behavioural and network correlates of two interneuron types in prefrontal cortex , 2013, Nature.

[30]  Henrik Jörntell,et al.  Stimulation within the cuneate nucleus suppresses synaptic activation of climbing fibers , 2013, Front. Neural Circuits.

[31]  G S Bhumbra,et al.  Reliable evaluation of the quantal determinants of synaptic efficacy using Bayesian analysis. , 2013, Journal of neurophysiology.

[32]  O. Paulsen,et al.  Distinct roles of GABAB1a- and GABAB1b-containing GABAB receptors in spontaneous and evoked termination of persistent cortical activity , 2012, The Journal of physiology.

[33]  M. Capogna,et al.  Neurogliaform cells of amygdala: a source of slow phasic inhibition in the basolateral complex , 2012, The Journal of physiology.

[34]  Christina Müller,et al.  Inhibitory Control of Linear and Supralinear Dendritic Excitation in CA1 Pyramidal Neurons , 2012, Neuron.

[35]  Kevin W Eliceiri,et al.  NIH Image to ImageJ: 25 years of image analysis , 2012, Nature Methods.

[36]  Bartlett W. Mel,et al.  Location-Dependent Effects of Inhibition on Local Spiking in Pyramidal Neuron Dendrites , 2012, PLoS Comput. Biol..

[37]  Masanori Murayama,et al.  Inhibitory Regulation of Dendritic Activity in vivo , 2012, Front. Neural Circuits.

[38]  M. Gassmann,et al.  Regulation of neuronal GABAB receptor functions by subunit composition , 2012, Nature Reviews Neuroscience.

[39]  M. Larkum,et al.  The Cellular Basis of GABAB-Mediated Interhemispheric Inhibition , 2012, Science.

[40]  Taro Kiritani,et al.  Corticospinal-specific HCN expression in mouse motor cortex: I(h)-dependent synaptic integration as a candidate microcircuit mechanism involved in motor control. , 2011, Journal of neurophysiology.

[41]  M. Capogna Neurogliaform cells and other interneurons of stratum lacunosum‐moleculare gate entorhinal–hippocampal dialogue , 2011, The Journal of physiology.

[42]  R. Pearce,et al.  GABAA,slow: causes and consequences , 2011, Trends in Neurosciences.

[43]  Christian Wozny,et al.  Specificity of Synaptic Connectivity between Layer 1 Inhibitory Interneurons and Layer 2/3 Pyramidal Neurons in the Rat Neocortex , 2011, Cerebral cortex.

[44]  Hongbo Jia,et al.  In vivo two-photon imaging of sensory-evoked dendritic calcium signals in cortical neurons , 2011, Nature Protocols.

[45]  J. Huguenard,et al.  Astrocytes as Gatekeepers of GABAB Receptor Function , 2010, The Journal of Neuroscience.

[46]  D. Rusakov,et al.  Slow GABA Transient and Receptor Desensitization Shape Synaptic Responses Evoked by Hippocampal Neurogliaform Cells , 2010, The Journal of Neuroscience.

[47]  R. Silver Neuronal arithmetic , 2010, Nature Reviews Neuroscience.

[48]  P. Slesinger,et al.  GABAB receptor coupling to G-proteins and ion channels. , 2010, Advances in pharmacology.

[49]  Y. Dan,et al.  An arithmetic rule for spatial summation of excitatory and inhibitory inputs in pyramidal neurons , 2009, Proceedings of the National Academy of Sciences.

[50]  Csaba Varga,et al.  Regulation of cortical microcircuits by unitary GABAergic volume transmission , 2009, Nature.

[51]  Thomas Klausberger,et al.  GABAergic interneurons targeting dendrites of pyramidal cells in the CA1 area of the hippocampus , 2009, The European journal of neuroscience.

[52]  D. Lewis,et al.  GABA transporter GAT1 prevents spillover at proximal and distal GABA synapses onto primate prefrontal cortex neurons. , 2009, Journal of neurophysiology.

[53]  C. Nicholson,et al.  Diffusion in brain extracellular space. , 2008, Physiological reviews.

[54]  Scott B. Baden,et al.  Fast Monte Carlo Simulation Methods for Biological Reaction-Diffusion Systems in Solution and on Surfaces , 2008, SIAM J. Sci. Comput..

[55]  P. Somogyi,et al.  Neuronal Diversity and Temporal Dynamics: The Unity of Hippocampal Circuit Operations , 2008, Science.

[56]  E. P. Gardner,et al.  Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex , 2008, Nature Reviews Neuroscience.

[57]  Jennifer J. Linderman,et al.  Diffusion-limited reactions in G-protein activation: unexpected consequences of antagonist and agonist competition. , 2008, Journal of theoretical biology.

[58]  Y. Yanagawa,et al.  Quantitative chemical composition of cortical GABAergic neurons revealed in transgenic venus-expressing rats. , 2008, Cerebral cortex.

[59]  Ivan Soltesz,et al.  Different transmitter transients underlie presynaptic cell type specificity of GABAA,slow and GABAA,fast , 2007, Proceedings of the National Academy of Sciences.

[60]  K. L. Martinez,et al.  Monitoring the diffusion of single heterotrimeric G proteins in supported cell-membrane sheets reveals their partitioning into microdomains. , 2006, Journal of molecular biology.

[61]  M. Frotscher,et al.  Compartment-Dependent Colocalization of Kir3.2-Containing K+ Channels and GABAB Receptors in Hippocampal Pyramidal Cells , 2006, The Journal of Neuroscience.

[62]  Marco Capogna,et al.  Neurogliaform Neurons Form a Novel Inhibitory Network in the Hippocampal CA1 Area , 2005, The Journal of Neuroscience.

[63]  G. Tamás,et al.  Gap-Junctional Coupling between Neurogliaform Cells and Various Interneuron Types in the Neocortex , 2005, The Journal of Neuroscience.

[64]  C. Nicholson,et al.  Cell cavities increase tortuosity in brain extracellular space. , 2005, Journal of theoretical biology.

[65]  M. Farrant,et al.  Variations on an inhibitory theme: phasic and tonic activation of GABAA receptors , 2005, Nature Reviews Neuroscience.

[66]  M. London,et al.  Dendritic computation. , 2005, Annual review of neuroscience.

[67]  H. Markram,et al.  Interneurons of the neocortical inhibitory system , 2004, Nature Reviews Neuroscience.

[68]  M. Gassmann,et al.  Molecular Structure and Physiological Functions of GABAB Receptors , 2004 .

[69]  M. Gassmann,et al.  Molecular structure and physiological functions of GABA(B) receptors. , 2004, Physiological reviews.

[70]  R. Angus Silver,et al.  Estimation of nonuniform quantal parameters with multiple-probability fluctuation analysis: theory, application and limitations , 2003, Journal of Neuroscience Methods.

[71]  S. Siegelbaum,et al.  Hyperpolarization-activated cation currents: from molecules to physiological function. , 2003, Annual review of physiology.

[72]  G. Tamás,et al.  Identified Sources and Targets of Slow Inhibition in the Neocortex , 2003, Science.

[73]  Sheldon Howard Jacobson,et al.  The Theory and Practice of Simulated Annealing , 2003, Handbook of Metaheuristics.

[74]  Gábor Tamás,et al.  Polarized and compartment-dependent distribution of HCN1 in pyramidal cell dendrites , 2002, Nature Neuroscience.

[75]  David Attwell,et al.  Tonic and Spillover Inhibition of Granule Cells Control Information Flow through Cerebellar Cortex , 2002, Neuron.

[76]  Peter Somogyi,et al.  Cell Type- and Subcellular Position-Dependent Summation of Unitary Postsynaptic Potentials in Neocortical Neurons , 2002, The Journal of Neuroscience.

[77]  P. Stanfield,et al.  Constitutively active and G-protein coupled inward rectifier K+ channels: Kir2.0 and Kir3.0. , 2002, Reviews of physiology, biochemistry and pharmacology.

[78]  M. Larkum,et al.  High I(h) channel density in the distal apical dendrite of layer V pyramidal cells increases bidirectional attenuation of EPSPs. , 2001, Journal of neurophysiology.

[79]  G. Westbrook,et al.  Slow Desensitization Regulates the Availability of Synaptic GABAA Receptors , 2000, The Journal of Neuroscience.

[80]  M. Scanziani GABA Spillover Activates Postsynaptic GABAB Receptors to Control Rhythmic Hippocampal Activity , 2000, Neuron.

[81]  B. Sakmann,et al.  Calcium electrogenesis in distal apical dendrites of layer 5 pyramidal cells at a critical frequency of back-propagating action potentials. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[82]  K. Staley,et al.  Modulation of mammalian dendritic GABAA receptor function by the kinetics of Cl− and HCO3− transport , 1999, The Journal of physiology.

[83]  A. Destexhe,et al.  Dual intracellular recordings and computational models of slow inhibitory postsynaptic potentials in rat neocortical and hippocampal slices , 1999, Neuroscience.

[84]  P. Somogyi,et al.  Unitary IPSPs evoked by interneurons at the stratum radiatum‐stratum lacunosum‐moleculare border in the CA1 area of the rat hippocampus in vitro , 1998, The Journal of physiology.

[85]  N. Dascal Signalling via the G protein-activated K+ channels. , 1997, Cellular signalling.

[86]  M. Häusser,et al.  Intersynaptic diffusion of neurotransmitter. , 1997, Trends in neurosciences.

[87]  B. Bean,et al.  GABAB Receptor-Activated Inwardly Rectifying Potassium Current in Dissociated Hippocampal CA3 Neurons , 1996, The Journal of Neuroscience.

[88]  D. Clapham,et al.  The K+ channel inward rectifier subunits form a channel similar to neuronal G protein‐gated K+ channel , 1996, FEBS letters.

[89]  D. Clapham,et al.  Ion channel regulation by G proteins. , 1995, Physiological reviews.

[90]  I. Mody,et al.  Bridging the cleft at GABA synapses in the brain , 1994, Trends in Neurosciences.

[91]  R. Nicoll,et al.  Local and diffuse synaptic actions of GABA in the hippocampus , 1993, Neuron.

[92]  T J Sejnowski,et al.  When is an inhibitory synapse effective? , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[93]  G. Szabó,et al.  Mechanism of muscarinic receptor-induced K+ channel activation as revealed by hydrolysis-resistant GTP analogues , 1988, The Journal of general physiology.

[94]  R. Nicoll,et al.  A physiological role for GABAB receptors in the central nervous system , 1988, Nature.

[95]  J. Huguenard,et al.  Whole-cell voltage-clamp study of the fading of GABA-activated currents in acutely dissociated hippocampal neurons. , 1986, Journal of neurophysiology.

[96]  B. Alger,et al.  Use-dependent depression of IPSPs in rat hippocampal pyramidal cells in vitro. , 1985, Journal of neurophysiology.

[97]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[98]  T. Poggio,et al.  Nonlinear interactions in a dendritic tree: localization, timing, and role in information processing. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[99]  L. G. Longsworth Diffusion Measurements, at 1°, of Aqueous Solutions of Amino Acids, Peptides and Sugars , 1952 .