Fast discrete cosine transform pruning

A new fast pruning algorithm is proposed for computing the N/sub 0/ lowest frequency components of a length-N discrete cosine transform, where N/sub 0/ is any integer less than or equal to N, and N=2/sup m/. The computational complexity of the developed algorithm is lower than any of the existing algorithms, resulting in significant time savings. In the special case that N/sub 0/=2/sup m0/, the required number of multiplications and additions is 1/2 m/sub 0/N and (m/sub 0/+1)N+( 1/2 m/sub 0/-2)N/sub 0/+1, respectively. >

[1]  Zhongde Wang,et al.  Pruning the fast discrete cosine transform , 1991, IEEE Trans. Commun..

[2]  P. Yip,et al.  Discrete Cosine Transform: Algorithms, Advantages, Applications , 1990 .

[3]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[4]  J. Markel,et al.  FFT pruning , 1971 .

[5]  Keinosuke Nagai,et al.  Pruning the decimation-in-time FFT algorithm with frequency shift , 1986, IEEE Trans. Acoust. Speech Signal Process..

[6]  Athanassios N. Skodras,et al.  Efficient input-reordering algorithms for fast DCT , 1991 .

[7]  N. Ahmed,et al.  Discrete Cosine Transform , 1996 .

[8]  H. V. Sorensen,et al.  A new efficient algorithm for computing a few DFT points , 1988, 1988., IEEE International Symposium on Circuits and Systems.

[9]  K. L. Ho,et al.  A new two-dimensional fast cosine transform algorithm , 1991, IEEE Trans. Signal Process..

[10]  Francisco Argüello,et al.  Fast cosine transform based on the successive doubling method , 1990 .