Response functions in linear viscoelastic constitutive equations and related fractional operators

This study addresses the stress–strain relaxation functions of solid polymers in the framework of the linear viscoelasticity with aim to establish the adequate fractional operators emerging from the hereditary integrals. The analysis encompasses power-law and non-power-law materials, thus allowing to see the origins of application of the tools of the classical fractional calculus with singular memory kernels and the ideas leading towards fractional operators with non-singular (regular) kernels. A step ahead in modelling with hereditary integrals is the decomposition of non-power-law relaxation curves by Prony series, thus obtaining discrete relaxation kernels with a finite number of terms. This approach allows for seeing the physical background of the newly defined Caputo–Fabrizio time fractional derivative and demonstrates how other constitutive equations could be modified with non-singular fading memories. The non-power-law relaxation curves also allow for approximations by the Mittag–Leffler function of one parameter that leads reasonably into stress–strain hereditary integrals in terms of Atangana–Baleanu fractional derivative of Caputo sense. The main outcomes of the analysis done are the demonstrated distinguishes between the relaxation curve behaviours of different materials and are therefore the adequate modelling with suitable fractional operators.

[1]  W. Glöckle,et al.  Fractional relaxation and the time-temperature superposition principle , 1994 .

[2]  Attila Kossa,et al.  Visco-hyperelastic Characterization of Polymeric Foam Materials , 2016 .

[3]  M. Muñiz‐Calvente,et al.  Study of the time-temperature-dependent behaviour of PVB: Application to laminated glass elements , 2017 .

[4]  J. S. Lai,et al.  Creep and Relaxation of Nonlinear Viscoelastic Materials , 2011 .

[5]  M. L. Storm,et al.  Heat Conduction in Simple Metals , 1951 .

[6]  A. Pipkin,et al.  Lectures on Viscoelasticity Theory , 1972 .

[7]  J. Claes,et al.  Spatio-temporal gradients of dry matter content and fundamental material parameters of Gouda cheese , 2014 .

[8]  Hidekazu Ikeno,et al.  mxpfit: A library for finding optimal multi-exponential approximations , 2018, Comput. Phys. Commun..

[9]  Wolfgang G. Knauss,et al.  Improved relaxation time coverage in ramp-strain histories , 2007 .

[10]  Zong Woo Geem,et al.  Determination of viscoelastic and damage properties of hot mix asphalt concrete using a harmony search algorithm , 2009 .

[11]  A. Bakker,et al.  Analysis of the non-linear creep of high-density polyethylene , 1995 .

[12]  Jordan Yankov Hristov,et al.  Linear Viscoelastic Responses: The Prony Decomposition Naturally Leads Into the Caputo-Fabrizio Fractional Operator , 2018, Front. Phys..

[13]  Kevin L Troyer,et al.  Viscoelastic effects during loading play an integral role in soft tissue mechanics. , 2012, Acta biomaterialia.

[14]  Dumitru Baleanu,et al.  On some new properties of fractional derivatives with Mittag-Leffler kernel , 2017, Commun. Nonlinear Sci. Numer. Simul..

[15]  M. M. Lavrentiev,et al.  Some Improperly Posed Problems of Mathematical Physics , 1967 .

[16]  Chen Tzikang Determining a Prony Series for a Viscoelastic Material From Time Varying Strain Data , 2000 .

[17]  José Francisco Gómez-Aguilar,et al.  Modeling of a Mass-Spring-Damper System by Fractional Derivatives with and without a Singular Kernel , 2015, Entropy.

[18]  Walter Noll,et al.  Foundations of Linear Viscoelasticity , 1961 .

[19]  Nicholas W. Tschoegl,et al.  The Phenomenological Theory of Linear Viscoelastic Behavior: An Introduction , 1989 .

[20]  R. Metzler,et al.  Generalized viscoelastic models: their fractional equations with solutions , 1995 .

[21]  John W. Van Zee,et al.  Service life estimation of liquid silicone rubber seals in polymer electrolyte membrane fuel cell en , 2011 .

[22]  Dumitru Baleanu,et al.  Analysis of regularized long-wave equation associated with a new fractional operator with Mittag-Leffler type kernel , 2018 .

[23]  Gaston H. Gonnet,et al.  On the LambertW function , 1996, Adv. Comput. Math..

[24]  Araújo,et al.  THE EFFECT OF MEMORY TERMS IN DIFFUSION PHENOMENA , 2006 .

[25]  K. Laksari,et al.  Constitutive model for brain tissue under finite compression. , 2012, Journal of biomechanics.

[26]  A. Tessler,et al.  Dynamics of thick viscoelastic beams , 1997 .

[27]  Deni Torres Román,et al.  Using Generalized Entropies and OC-SVM with Mahalanobis Kernel for Detection and Classification of Anomalies in Network Traffic , 2015, Entropy.

[28]  G. W. Blair A model to describe the flow curves of concentrated suspensions of spherical particles , 1967 .

[29]  Magdalena Orczykowska,et al.  Fractional Generalizations of Maxwell and Kelvin-Voigt Models for Biopolymer Characterization , 2015, PloS one.

[30]  S. Arabia,et al.  Properties of a New Fractional Derivative without Singular Kernel , 2015 .

[31]  Victor Fabian Morales-Delgado,et al.  Fractional operator without singular kernel: Applications to linear electrical circuits , 2018, Int. J. Circuit Theory Appl..

[32]  W. Knauss,et al.  Time dependent large principal deformation of polymers , 1995 .

[33]  R. Bagley,et al.  On the Fractional Calculus Model of Viscoelastic Behavior , 1986 .

[34]  Marcia T. Mitchell,et al.  Semantic processing of English sentences using statistical computation based on neurophysiological models , 2015, Front. Physiol..

[35]  J. Daniel,et al.  Continuous relaxation and retardation spectrum method for viscoelastic characterization of asphalt concrete , 2012 .

[36]  José António Tenreiro Machado,et al.  On the numerical computation of the Mittag-Leffler function , 2014, Commun. Nonlinear Sci. Numer. Simul..

[37]  N. Phan-Thien,et al.  Linear viscoelastic properties of bovine brain tissue in shear. , 1997, Biorheology.

[38]  S. Holm,et al.  Estimation of shear modulus in media with power law characteristics. , 2016, Ultrasonics.

[39]  The rheological law underlying the nutting equation , 1951 .

[40]  G. Genin,et al.  Efficient and optimized identification of generalized Maxwell viscoelastic relaxation spectra. , 2016, Journal of the mechanical behavior of biomedical materials.

[41]  N. B. Lezhnev,et al.  Extended frequency range measurements for determining the Kneser-type acoustic relaxation time. , 2000, Ultrasonics.

[42]  A. Zine,et al.  On the nonlinear viscoelastic behavior of rubber-like materials: Constitutive description and identification , 2017 .

[43]  Andrea Giusti,et al.  Prabhakar-like fractional viscoelasticity , 2017, Commun. Nonlinear Sci. Numer. Simul..

[44]  J. Garbarski The application of an exponential-type function for the modeling of viscoelasticity of solid polymers , 1992 .

[45]  H. Yin,et al.  Self-heating of a polymeric particulate composite under mechanical excitations , 2018 .

[46]  K. Adolfsson,et al.  On the Fractional Order Model of Viscoelasticity , 2005 .

[47]  A. Atangana,et al.  New Fractional Derivatives with Nonlocal and Non-Singular Kernel: Theory and Application to Heat Transfer Model , 2016, 1602.03408.

[48]  M. Gurtin On the thermodynamics of materials with memory , 1968 .

[49]  E. Dunham,et al.  Earthquake cycle simulations with rate-and-state friction and power-law viscoelasticity , 2017 .

[50]  E. K. Lenzi,et al.  The Role of Fractional Time-Derivative Operators on Anomalous Diffusion , 2017, Front. Phys..

[51]  Mikael Enelund,et al.  Time domain modeling of damping using anelastic displacement fields and fractional calculus , 1999 .

[52]  A. Phillips,et al.  Constitutive models for impacted morsellised cortico-cancellous bone. , 2006, Biomaterials.

[53]  W. Szyszkowski,et al.  An effective method for non-linear viscoelastic structural analysis , 1990 .

[54]  P. Hansen Numerical tools for analysis and solution of Fredholm integral equations of the first kind , 1992 .

[55]  J. Hristov Derivation of the Fractional Dodson Equation and Beyond: Transient Diffusion With a Non-Singular Memory and Exponentially Fading-Out Diffusivity , 2017 .

[56]  Silvia Vitali,et al.  Storage and Dissipation of Energy in Prabhakar Viscoelasticity , 2017, 1712.09419.

[57]  Dos Santos,et al.  Non-Gaussian Distributions to Random Walk in the Context of Memory Kernels , 2018 .

[58]  Åke Björck,et al.  Numerical methods for least square problems , 1996 .

[59]  A. Giusti,et al.  Bessel Models of Linear Viscoelasticity , 2018 .

[60]  H. Waisman,et al.  A Prony-series type viscoelastic solid coupled with a continuum damage law for polar ice modeling , 2016 .

[61]  Abdon Atangana,et al.  Numerical solution for the model of RLC circuit via the fractional derivative without singular kernel , 2015 .

[62]  Badr Saad T. Alkahtani,et al.  Analysis of the Keller-Segel Model with a Fractional Derivative without Singular Kernel , 2015, Entropy.

[63]  N. Sasaki,et al.  Viscoelastic properties of bone as a function of water content. , 1995, Journal of biomechanics.

[64]  S. Das A New Look at Formulation of Charge Storage in Capacitors and Application to Classical Capacitor and Fractional Capacitor Theory , 2018, Asian Journal of Research and Reviews in Physics.

[65]  K. Song,et al.  Rheology of concentrated xanthan gum solutions: Oscillatory shear flow behavior , 2006 .

[66]  R. Christensen Theory of viscoelasticity : an introduction , 1971 .

[67]  Gareth H. McKinley,et al.  A fractional K-BKZ constitutive formulation for describing the nonlinear rheology of multiscale complex fluids , 2014 .

[68]  Wen Chen,et al.  Fractional viscoelastic models with non-singular kernels , 2018, Mechanics of Materials.

[69]  Jace W. Nunziato,et al.  On heat conduction in materials with memory , 1971 .

[70]  I. Podlubny Fractional differential equations , 1998 .

[71]  C. Friedrich Mechanical stress relaxation in polymers: fractional integral model versus fractional differential model , 1993 .

[72]  A. Fernández Canteli,et al.  Viscoelastic Characterisation of the Temporomandibular Joint Disc in Bovines , 2011 .

[73]  P. Nutting Deformation in relation to time, pressure and temperature , 1946 .

[74]  M. Renardy Some remarks on the propagation and non-propagation of discontinuities in linearly viscoelastic liquids , 1982 .

[75]  Jordan Hristov,et al.  Derivatives with Non-Singular Kernels from the Caputo-Fabrizio Definition and Beyond: Appraising Analysis with Emphasis on Diffusion Models , 2018 .

[76]  F. Canestrari,et al.  Pseudo-variables method to calculate HMA relaxation modulus through low-temperature induced stress and strain , 2015 .

[77]  Dumitru Baleanu,et al.  On the analysis of fractional diabetes model with exponential law , 2018, Advances in Difference Equations.

[78]  Arturo González,et al.  Characterization of non-linear bearings using the Hilbert–Huang transform , 2015 .

[79]  Andrea Giusti,et al.  A comment on some new definitions of fractional derivative , 2017, Nonlinear Dynamics.

[80]  N. Sasaki,et al.  Stress relaxation function of bone and bone collagen. , 1993, Journal of biomechanics.

[81]  R. Metzler,et al.  Relaxation in filled polymers: A fractional calculus approach , 1995 .

[82]  M. Liberatore,et al.  Rheology and viscosity scaling of the polyelectrolyte xanthan gum , 2009 .

[83]  Michele Caputo,et al.  Applications of New Time and Spatial Fractional Derivatives with Exponential Kernels , 2016 .

[84]  A. Paolone,et al.  Identification of the viscoelastic properties of soft materials at low frequency: performance, ill-conditioning and extrapolation capabilities of fractional and exponential models. , 2014, Journal of the mechanical behavior of biomedical materials.

[85]  C. Giorgi,et al.  Non-Classical Memory Kernels in Linear Viscoelasticity , 2016 .

[86]  Stergios Pispas,et al.  Particle tracking microrheology of the power-law viscoelasticity of xanthan solutions , 2016 .

[87]  W. Brown,et al.  Viscoelastic mechanical properties measurement of thin Al and Al-Mg films using bulge testing , 2016 .

[88]  Levin J. Sliker,et al.  Frictional resistance model for tissue-capsule endoscope sliding contact in the gastrointestinal tract , 2016 .

[89]  J. Stastna,et al.  Dynamic master curves from the stretched exponential relaxation modulus , 1997 .

[90]  Gerhard A. Holzapfel,et al.  ON LARGE STRAIN VISCOELASTICITY: CONTINUUM FORMULATION AND FINITE ELEMENT APPLICATIONS TO ELASTOMERIC STRUCTURES , 1996 .

[91]  J. Mauro,et al.  On the Prony series representation of stretched exponential relaxation , 2018, Physica A: Statistical Mechanics and its Applications.

[92]  J. Hristov Steady-state heat conduction in a medium with spatial non-singular fading memory: Derivation of Caputo-Fabrizio space-fractional derivative from Cattaneo concept with Jeffrey`s Kernel and analytical solutions , 2017 .

[93]  A. Constantinescu,et al.  Revisiting the identification of generalized Maxwell models from experimental results , 2015 .

[94]  Ronald Tetzlaff,et al.  Guest Editorial – Special Issue on ‘Memristors: Devices, Models, Circuits, Systems, and Applications’ , 2018, International journal of circuit theory and applications.

[95]  Baoshan Huang,et al.  Characterization of asphalt concrete linear viscoelastic behavior utilizing Havriliak–Negami complex modulus model , 2015 .

[96]  N. Tschoegl The Phenomenological Theory of Linear Viscoelastic Behavior , 1989 .

[97]  A. Hanyga Viscous dissipation and completely monotonic relaxation moduli , 2005 .

[98]  Nishant Ravikumar,et al.  A constitutive model for ballistic gelatin at surgical strain rates. , 2015, Journal of the mechanical behavior of biomedical materials.

[100]  R. Magin,et al.  Fractional calculus in viscoelasticity: An experimental study , 2010 .

[101]  Chong-yu Wang,et al.  First-principles study of diffusion of Li, Na, K and Ag in ZnO , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[102]  Wanan Sheng,et al.  A new method for radiation forces for floating platforms in waves , 2015 .

[103]  N. Shrive,et al.  Swelling significantly affects the material properties of the menisci in compression. , 2015, Journal of biomechanics.

[104]  J. Hristov STEADY-STATE HEAT CONDUCTION IN A MEDIUM WITH SPATIAL NON-SINGULAR FADING MEMORY: Derivation of Caputo-Fabrizio space-fractional derivative with Jeffrey’s kernel and analytical solutions , 2016 .

[105]  Allyson A Barrett,et al.  Thermal compatibility of dental ceramic systems using cylindrical and spherical geometries. , 2008, Dental materials : official publication of the Academy of Dental Materials.

[106]  M. Caputo Linear Models of Dissipation whose Q is almost Frequency Independent-II , 1967 .

[107]  Jae Woo Kim,et al.  The response of a glassy polymer in a loading/unloading deformation: The stress memory experiment , 2013 .

[108]  Rene B. Testa,et al.  Mechanics of an Adhesive Anchor System Subjected to a Pullout Load. II: Viscoelastic Analysis , 2014 .

[109]  Xiaoyun Jiang,et al.  Creep constitutive models for viscoelastic materials based on fractional derivatives , 2017, Comput. Math. Appl..

[110]  R. Pirola,et al.  Stars and stripes in pancreatic cancer: role of stellate cells and stroma in cancer progression , 2014, Front. Physiol..

[111]  M. Fabrizio,et al.  Viscoelastic Solids of Exponential Type. II. Free Energies, Stability and Attractors , 2004 .

[112]  Sharmishtha Mitra,et al.  A genetic algorithms based technique for computing the nonlinear least squares estimates of the parameters of sum of exponentials model , 2012, Expert Syst. Appl..

[113]  Seung Tae Choi,et al.  Flat indentation of a viscoelastic polymer film on a rigid substrate , 2008 .

[114]  M. Caputo,et al.  A new Definition of Fractional Derivative without Singular Kernel , 2015 .

[115]  Jordan Hristov,et al.  Transient heat diffusion with a non-singular fading memory: From the Cattaneo constitutive equation with Jeffrey’s Kernel to the Caputo-Fabrizio time-fractional derivative , 2016 .

[116]  Abdon Atangana,et al.  Fractional derivatives with no-index law property: Application to chaos and statistics , 2018, Chaos, Solitons & Fractals.

[117]  Francesco Mainardi,et al.  On the propagation of transient waves in a viscoelastic Bessel medium , 2016 .

[118]  A. Hanyga,et al.  Wave propagation in media with singular memory , 2001 .

[119]  J. A. Tenreiro Machado,et al.  A critical analysis of the Caputo-Fabrizio operator , 2018, Commun. Nonlinear Sci. Numer. Simul..

[120]  Francesco Mainardi,et al.  A class of linear viscoelastic models based on Bessel functions , 2016, 1602.04664.

[121]  Francesco Mainardi,et al.  A dynamic viscoelastic analogy for fluid-filled elastic tubes , 2015, 1505.06694.

[122]  Dumitru Baleanu,et al.  Relaxation and diffusion models with non-singular kernels , 2017 .

[123]  Hongwei Zhou,et al.  A creep constitutive model for salt rock based on fractional derivatives , 2011 .

[124]  Abdon Atangana,et al.  Blind in a commutative world: Simple illustrations with functions and chaotic attractors , 2018, Chaos, Solitons & Fractals.

[125]  Laurent Daudeville,et al.  Load-Bearing Capacity of Tempered Structural Glass , 1999 .

[126]  D. Plazek,et al.  On the use of stretched-exponential functions for both linear viscoelastic creep and stress relaxation , 1997 .

[127]  R. C. Lin,et al.  On a nonlinear viscoelastic material law at finite strain for polymers , 2001 .

[128]  A. Drozdov,et al.  Finite Elasticity and Viscoelasticity: A Course in the Nonlinear Mechanics of Solids , 1996 .

[129]  F. Mainardi Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models , 2010 .

[130]  M. Fabrizio,et al.  Viscoelastic Solids of Exponential Type. I. Minimal Representations and Controllability , 2004 .

[131]  A. Drozdov A constitutive model for nonlinear viscoelastic media , 1997 .

[132]  H. Winter,et al.  Interrelation between continuous and discrete relaxation time spectra , 1992 .

[133]  J. Schneider,et al.  Stress relaxation in tempered glass caused by heat soak testing , 2016 .

[134]  Abdon Atangana,et al.  On the new fractional derivative and application to nonlinear Fisher's reaction-diffusion equation , 2016, Appl. Math. Comput..

[135]  A. R. Johnson Modeling viscoelastic materials using internal variables , 1999 .

[136]  P. G. Nutting,et al.  A new general law of deformation , 1921 .

[137]  A. Paolone,et al.  A comparison of nonlinear integral-based viscoelastic models through compression tests on filled rubber , 2010 .

[138]  H. Kneser Zur Dispersionstheorie des Schalles , 1931 .

[139]  Rainer Erdmann,et al.  Fast fitting of multi-exponential decay curves , 1997 .

[140]  Iu.N. Rabotnov Elements of hereditary solid mechanics , 1980 .

[141]  L. Brinson,et al.  Polymer Engineering Science and Viscoelasticity: An Introduction , 2007 .

[142]  R. K. Miller,et al.  An integrodifferential equation for rigid heat conductors with memory , 1978 .

[143]  Guoyou Huang,et al.  Effect of viscoelasticity on skin pain sensation , 2015 .

[144]  M. T. Cicero FRACTIONAL CALCULUS AND WAVES IN LINEAR VISCOELASTICITY , 2012 .

[145]  Devendra Kumar,et al.  A fractional epidemiological model for computer viruses pertaining to a new fractional derivative , 2018, Appl. Math. Comput..

[146]  Dumitru Vieru,et al.  Natural convection with damped thermal flux in a vertical circular cylinder , 2018 .

[147]  Vasily E. Tarasov No nonlocality. No fractional derivative , 2018, Commun. Nonlinear Sci. Numer. Simul..