Anthology of Human Repetitive DNA

Human repetitive DNA includes tandemly arrayed and interspersed repeats. Tandemly arrayed microsatellites, minisatellites, telomeric repeats, and centromeric satellites constitute a significant portion of the genomic DNA, particularly of heterochromatin. Furthermore, around 45% of the genome is represented by so-called interspersed repeats that are mostly remnants of retrovirus-like LTR retrotransposons, non-LTR retrotransposons, and DNA transposons inserted in the genomic DNA over millions of years. Currently, the most active are L1 and Alu families of non-LTR retrotransposons, and they are known to cause genetic diseases through insertion into genes. Furthermore, repetitive sequences, particularly Alu elements, can stimulate illegitimate recombinations producing chromosomal instabilities leading to genetic disorders. Analysis of repetitive DNA is an important part of genome studies, and it is based on specialized databases and computer programs. Keywords: AP Endonuclease; Autonomous Transposable Element; Consensus Sequence; cDNA; DNA Transposon; Family of Repetitive Elements; Interspersed Repeats; Long Interspersed Repeat (LINE) Element; Long Terminal Repeats (LTRs); LTR Retrotransposons; Microsatellites; Minisatellites; Non-LTR Retrotransposons; Processed Pseudogene (Retropseudogene); Provirus; Pseudogene; Recombination; Repetitive Elements (Repeats); Ribonuclease H (RNase H); Retrotransposition (Retroposition); Retrotransposon (Retroposon); Retrovirus; Reverse Transcriptase; Satellite DNA; Short Interspersed Repeat (SINE) Element; Superfamily of TEs; Tandem Repeats; Target-primed Reverse Transcription (TPRT); Transposable Elements (TEs, Transposons, Mobile Elements); Transposase; Transposition

[1]  J. Jurka,et al.  Sequence patterns indicate an enzymatic involvement in integration of mammalian retroposons. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[2]  M. Speek Antisense Promoter of Human L1 Retrotransposon Drives Transcription of Adjacent Cellular Genes , 2001, Molecular and Cellular Biology.

[3]  D. Mager,et al.  Endogenous Human Retroviruses , 1994 .

[4]  A. Smit Interspersed repeats and other mementos of transposable elements in mammalian genomes. , 1999, Current opinion in genetics & development.

[5]  Thomas W. Glover,et al.  A de novo Alu insertion results in neurofibromatosis type 1 , 1991, Nature.

[6]  E. Winzeler,et al.  Genomic and Genetic Definition of a Functional Human Centromere , 2001, Science.

[7]  A. F. Scott,et al.  Origin of the human L1 elements: Proposed progenitor genes deduced from a consensus DNA sequence☆ , 1987, Genomics.

[8]  R. E. Thayer,et al.  Kpn I family of long interspersed repeated DNA sequences in primates: polymorphism of family members and evidence for transcription. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[9]  M. Frommer,et al.  Sequence relationships of three human satellite DNAs. , 1986, Journal of molecular biology.

[10]  G. Grimaldi,et al.  Defining the beginning and end of KpnI family segments. , 1984, The EMBO journal.

[11]  J. Jurka,et al.  Sectorial mutagenesis by transposable elements , 2004, Genetica.

[12]  Dixie L. Mager,et al.  Human-Specific Integrations of the HERV-K Endogenous Retrovirus Family , 1998, Journal of Virology.

[13]  D. Gallwitz,et al.  Structure of two human beta‐actin‐related processed genes one of which is located next to a simple repetitive sequence. , 1983, The EMBO journal.

[14]  J. Brosius,et al.  BC200 RNA: a neural RNA polymerase III product encoded by a monomeric Alu element. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[15]  G Bernardi,et al.  The distribution of interspersed repeats is nonuniform and conserved in the mouse and human genomes. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[16]  Jerzy Jurka,et al.  Censor - a Program for Identification and Elimination of Repetitive Elements From DNA Sequences , 1996, Comput. Chem..

[17]  P. A. Biro,et al.  RNA polymerase III transcriptional units are interspersed among human non-alpha-globin genes. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[18]  J. Jurka,et al.  The Esterase and PHD Domains in CR1-Like Non-LTR Retrotransposons , 2003, Molecular biology and evolution.

[19]  T. Smith,et al.  A fundamental division in the Alu family of repeated sequences. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[20]  C. Hutchison,et al.  Master genes in mammalian repetitive DNA amplification. , 1992, Trends in genetics : TIG.

[21]  A. Weiner,et al.  Direct repeats flank three small nuclear RNA pseudogenes in the human genome , 1981, Cell.

[22]  A. Weiner,et al.  Nonviral retroposons: genes, pseudogenes, and transposable elements generated by the reverse flow of genetic information. , 1986, Annual review of biochemistry.

[23]  Arian F. A. Smit,et al.  MIRs are classic, tRNA-derived SINEs that amplified before the mammalian radiation , 1995, Nucleic Acids Res..

[24]  C. Hutchison,et al.  The L1Md long interspersed repeat family in the mouse: almost all examples are truncated at one end. , 1983, Nucleic acids research.

[25]  G. Swergold Identification, characterization, and cell specificity of a human LINE-1 promoter , 1990, Molecular and cellular biology.

[26]  T. Hayakawa,et al.  Inactivation of CMP-N-acetylneuraminic acid hydroxylase occurred prior to brain expansion during human evolution , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[27]  C. Schmid,et al.  Differential stress induction of individual Alu loci: implications for transcription and retrotransposition. , 2001, Gene.

[28]  Mary C. Rykowski,et al.  Human genome organization: Alu, LINES, and the molecular structure of metaphase chromosome bands , 1988, Cell.

[29]  J. Blomberg,et al.  Diversity of human endogenous retrovirus class II-like sequences. , 1999, The Journal of general virology.

[30]  P. A. Biro,et al.  Ubiquitous, interspersed repeated sequences in mammalian genomes. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[31]  Carl W. Schmid,et al.  Sequence organization of the human genome , 1975, Cell.

[32]  Swee Lay Thein,et al.  Hypervariable ‘minisatellite’ regions in human DNA , 1985, Nature.

[33]  Jef D Boeke,et al.  High Frequency Retrotransposition in Cultured Mammalian Cells , 1996, Cell.

[34]  A. Smit,et al.  Ancestral, mammalian-wide subfamilies of LINE-1 repetitive sequences. , 1995, Journal of molecular biology.

[35]  G. Corneo,et al.  A satellite DNA isolated from human tissues. , 1967, Journal of molecular biology.

[36]  R. Britten,et al.  Sources and evolution of human Alu repeated sequences. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[37]  A. Smit,et al.  The origin of interspersed repeats in the human genome. , 1996, Current opinion in genetics & development.

[38]  E. Vanin,et al.  Processed pseudogenes: characteristics and evolution. , 1984, Annual review of genetics.

[39]  H. Kazazian,et al.  LINE Drive Retrotransposition and Genome Instability , 2002, Cell.

[40]  H. Kazazian,et al.  Mobile elements and disease. , 1998, Current opinion in genetics & development.

[41]  J. Maio,et al.  KpnI families of long, interspersed repetitive DNAs in human and other primate genomes. , 1982, Nucleic acids research.

[42]  Sandra L. Martin,et al.  High-affinity, Non-sequence-specific RNA Binding by the Open Reading Frame 1 (ORF1) Protein from Long Interspersed Nuclear Element 1 (LINE-1)* , 2003, The Journal of Biological Chemistry.

[43]  H. Hohjoh,et al.  Sequence‐specific single‐strand RNA binding protein encoded by the human LINE‐1 retrotransposon , 1997, The EMBO journal.

[44]  J. V. Moran,et al.  Exon shuffling by L1 retrotransposition. , 1999, Science.

[45]  J. Mccoy,et al.  Syncytin is a captive retroviral envelope protein involved in human placental morphogenesis , 2000, Nature.

[46]  J. Brosius,et al.  RNAs from all categories generate retrosequences that may be exapted as novel genes or regulatory elements. , 1999, Gene.

[47]  Ian Korf,et al.  MaskerAid : a performance enhancement to RepeatMasker , 2000, Bioinform..

[48]  L. Duret,et al.  Nature and structure of human genes that generate retropseudogenes. , 2000, Genome research.

[49]  Jef D Boeke,et al.  Human L1 Retrotransposon Encodes a Conserved Endonuclease Required for Retrotransposition , 1996, Cell.

[50]  W. Jelinek,et al.  The Alu family of dispersed repetitive sequences. , 1982, Science.

[51]  E. Ullu,et al.  Alu sequences are processed 7SL RNA genes , 1984, Nature.

[52]  T. Miyata,et al.  Nucleotide sequence of human endogenous retrovirus genome related to the mouse mammary tumor virus genome , 1986, Journal of virology.

[53]  A. Smit,et al.  Identification of a new, abundant superfamily of mammalian LTR-transposons. , 1993, Nucleic acids research.

[54]  N. Okada,et al.  SINEs and LINEs share common 3' sequences: a review. , 1997, Gene.

[55]  M. Hattori,et al.  L1 family of repetitive DNA sequences in primates may be derived from a sequence encoding a reverse transcriptase-related protein , 1986, Nature.

[56]  R. Wellinger,et al.  The DNA structures at the ends of eukaryotic chromosomes. , 1997, European journal of cancer.

[57]  M. Martin,et al.  Characterization and partial nucleotide sequence of endogenous type C retrovirus segments in human chromosomal DNA. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[58]  R. Kurth,et al.  The viruses in all of us: characteristics and biological significance of human endogenous retrovirus sequences. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[59]  T. Südhof,et al.  Mutation in LDL receptor: Alu-Alu recombination deletes exons encoding transmembrane and cytoplasmic domains. , 1985, Science.

[60]  J. Jurka Repbase update: a database and an electronic journal of repetitive elements. , 2000, Trends in genetics : TIG.

[61]  R. Löwer,et al.  The pathogenic potential of endogenous retroviruses: facts and fantasies. , 1999, Trends in microbiology.

[62]  S. Antonarakis Recommendations for a nomenclature system for human gene mutations , 1998 .

[63]  J. V. Moran,et al.  Initial sequencing and analysis of the human genome. , 2001, Nature.

[64]  J. V. Moran,et al.  Hot L1s account for the bulk of retrotransposition in the human population , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[65]  A. Jeffreys,et al.  Complex gene conversion events in germline mutation at human minisatellites , 1994, Nature Genetics.

[66]  Y. Quentin,et al.  The Alu family developed through successive waves of fixation closely connected with primate lineage history , 2005, Journal of Molecular Evolution.

[67]  A. F. Scott,et al.  Isolation of an active human transposable element. , 1991, Science.

[68]  E. Ostertag,et al.  Biology of mammalian L1 retrotransposons. , 2001, Annual review of genetics.

[69]  Carl W. Schmid,et al.  Standardized nomenclature for Alu repeats , 2004, Journal of Molecular Evolution.

[70]  A. Smit,et al.  Tiggers and DNA transposon fossils in the human genome. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[71]  M. Ferguson-Smith,et al.  Human centromeric DNAs , 1997, Human Genetics.

[72]  A. Weiner,et al.  An abundant cytoplasmic 7S RNA is complementary to the dominant interspersed middle repetitive DNA sequence family in the human genome , 1980, Cell.

[73]  J. Squire,et al.  The role of Alu repeat clusters as mediators of recurrent chromosomal aberrations in tumors , 2002, Genes, chromosomes & cancer.

[74]  Milovan Krnjajic,et al.  Active Alu elements are passed primarily through paternal germlines. , 2002, Theoretical population biology.

[75]  J. V. Moran,et al.  DNA repair mediated by endonuclease-independent LINE-1 retrotransposition , 2002, Nature Genetics.

[76]  M. Batzer,et al.  Alu repeats and human disease. , 1999, Molecular genetics and metabolism.

[77]  Haig H. Kazazian,et al.  Mobile elements and the human genome , 2000, Nature Reviews Genetics.

[78]  K. Choo,et al.  Neocentromeres: role in human disease, evolution, and centromere study. , 2002, American journal of human genetics.

[79]  Thierry Heidmann,et al.  Human LINE retrotransposons generate processed pseudogenes , 2000, Nature Genetics.

[80]  R. Britten,et al.  Repetitive and Non-Repetitive DNA Sequences and a Speculation on the Origins of Evolutionary Novelty , 1971, The Quarterly Review of Biology.

[81]  D. Tautz,et al.  Slippage synthesis of simple sequence DNA. , 1992, Nucleic acids research.

[82]  D. Mager Human endogenous retroviruses and pathogenicity: genomic considerations. , 1999, Trends in microbiology.

[83]  Thierry Heidmann,et al.  LINE-mediated retrotransposition of marked Alu sequences , 2003, Nature Genetics.

[84]  J. Jurka,et al.  Repeats in genomic DNA: mining and meaning. , 1998, Current opinion in structural biology.

[85]  B. Berkhout,et al.  Identification of an Active Reverse Transcriptase Enzyme Encoded by a Human Endogenous HERV-K Retrovirus , 1999, Journal of Virology.

[86]  M. Batzer,et al.  Alu repeats and human genomic diversity , 2002, Nature Reviews Genetics.

[87]  J. Jurka,et al.  Microsatellites in different eukaryotic genomes: survey and analysis. , 2000, Genome research.

[88]  M. Singer SINEs and LINEs: Highly repeated short and long interspersed sequences in mammalian genomes , 1982, Cell.

[89]  V. Kapitonov,et al.  The age of Alu subfamilies , 2004, Journal of Molecular Evolution.

[90]  J. Maio,et al.  Transcription of the KpnI families of long interspersed DNAs in human cells , 1983, Nature.

[91]  M. Lyon,et al.  X-Chromosome inactivation: a repeat hypothesis , 1998, Cytogenetic and Genome Research.

[92]  T. Heidmann,et al.  Isolation of novel human endogenous retrovirus-like elements with foamy virus-related pol sequence , 1995, Journal of virology.

[93]  Jan Paces,et al.  HERVd: database of human endogenous retroviruses , 2002, Nucleic Acids Res..