On the principal eigenvalue of elliptic operators in $\R^N$ and applications
暂无分享,去创建一个
[1] P. Kuchment,et al. Integral representations and Liouville theorems for solutions of periodic elliptic equations , 2000, math/0007051.
[2] S. Varadhan,et al. The principal eigenvalue and maximum principle for second‐order elliptic operators in general domains , 1994 .
[3] M. Safonov,et al. Harnack's inequality for elliptic equations and the Hölder property of their solutions , 1983 .
[4] Andreas E. Kyprianou,et al. Local extinction versus local exponential growth for spatial branching processes , 2004 .
[5] Henri Berestycki,et al. Analysis of the periodically fragmented environment model : I – Species persistence , 2005, Journal of mathematical biology.
[6] R. Pinsky. TRANSIENCE, RECURRENCE AND LOCAL EXTINCTION PROPERTIES OF THE SUPPORT FOR SUPERCRITICAL FINITE MEASURE-VALUED DIFFUSIONS' , 1996 .
[7] V. A. Kondrat'ev,et al. On Positive Solutions of Elliptic Equations , 1971 .
[8] J. Lions,et al. Un théorème de Liouville pour des équations elliptiques à coefficients périodiques , 1989 .
[9] N. Krylov,et al. A CERTAIN PROPERTY OF SOLUTIONS OF PARABOLIC EQUATIONS WITH MEASURABLE COEFFICIENTS , 1981 .
[10] H. Weinberger,et al. Maximum principles in differential equations , 1967 .
[11] Henri Berestycki,et al. Analysis of the periodically fragmented environment model: II—biological invasions and pulsating travelling fronts , 2005 .
[12] J. Moser,et al. On a Liouville-type theorem for linear and nonlinear elliptic differential equations on a torus , 1992 .
[13] M. A. Krasnoselʹskii,et al. Positive Linear Systems, the Method of Positive Operators , 1989 .
[14] R. Pinsky. Positive Harmonic Functions and Diffusion: References , 1995 .
[15] Henri Berestycki,et al. Liouville-type results for semilinear elliptic equations in unbounded domains , 2007 .
[16] L. Hansen,et al. Long Term Risk: An Operator Approach , 2006 .
[17] Henri Berestycki,et al. Analysis of the periodically fragmented environment model : I - Influence of periodic heterogeneous environment on species persistence. , 2005 .
[18] R. Pinsky. Second Order Elliptic Operators with Periodic Coefficients: Criticality Theory, Perturbations, and Positive Harmonic Functions , 1995 .
[19] S Bochner,et al. A NEW APPROACH TO ALMOST PERIODICITY. , 1962, Proceedings of the National Academy of Sciences of the United States of America.
[20] Henri Berestycki,et al. Le nombre de solutions de certains problèmes semi-linéaires elliptiques , 1981 .
[21] P. Bassanini,et al. Elliptic Partial Differential Equations of Second Order , 1997 .
[22] R. Pinsky,et al. On the Construction and Support Properties of Measure-Valued Diffusions on $D \subseteq \mathbb{R}^d$ with Spatially Dependent Branching , 1999 .
[23] M. Kreĭn,et al. Linear operators leaving invariant a cone in a Banach space , 1950 .