A Note on k-Colorability of P5-Free Graphs

We present a polynomial-time algorithm determining whether or not, for a fixed k, a P 5 -free graph can be k-colored. If such a coloring exists, the algorithm will produce one.

[1]  M. Grötschel,et al.  Combinatorial optimization , 1996 .

[2]  Raymond E. Miller,et al.  Complexity of Computer Computations , 1972 .

[3]  Van Bang Le,et al.  On the complexity of 4-coloring graphs without long induced paths , 2007, Theor. Comput. Sci..

[4]  David S. Johnson,et al.  Some simplified NP-complete problems , 1974, STOC '74.

[5]  V. Chvátal,et al.  Topics on perfect graphs , 1984 .

[6]  Ingo Schiermeyer,et al.  3-Colorability in P for P6-free graphs , 2004, Discret. Appl. Math..

[7]  Chính T. Hoàng,et al.  Optimizing weakly triangulated graphs , 1989 .

[8]  Fanica Gavril,et al.  Algorithms for Minimum Coloring, Maximum Clique, Minimum Covering by Cliques, and Maximum Independent Set of a Chordal Graph , 1972, SIAM J. Comput..

[9]  Gerhard J. Woeginger,et al.  The complexity of coloring graphs without long induced paths , 2001, Acta Cybern..

[10]  Z. Tuza,et al.  Dominating cliques in P5-free graphs , 1990 .

[11]  Chính T. Hoàng,et al.  Optimizing weakly triangulated graphs , 1990, Graphs Comb..

[12]  Martin Grötschel,et al.  The ellipsoid method and its consequences in combinatorial optimization , 1981, Comb..

[13]  Zsolt Tuza,et al.  Complexity of Coloring Graphs without Forbidden Induced Subgraphs , 2001, WG.

[14]  M. Golummc Algorithmic graph theory and perfect graphs , 1980 .

[15]  David S. Johnson,et al.  Some Simplified NP-Complete Graph Problems , 1976, Theor. Comput. Sci..

[16]  Amir Pnueli,et al.  Permutation Graphs and Transitive Graphs , 1972, JACM.

[17]  S. E. Markosyan,et al.  ω-Perfect graphs , 1990 .

[18]  M. Golumbic Algorithmic graph theory and perfect graphs , 1980 .