Modelisation et simulation d'une liaison HVDC de type VSC-MMC

RESUME Le transport d’energie en courant continu a haute tension (CCHT ou HVDC) est aujourd’hui en pleine expansion dans le monde. Deux principaux facteurs sont a l’origine de cet engouement. Le premier est lie a la difficulte de construire de nouvelles lignes aeriennes pour assurer le developpement du reseau a haute tension qui fait que le recours a des câbles souterrains est de plus en plus frequent. Or l’utilisation de ces câbles est limitee en longueur a quelques dizaines de km a cause du courant capacitif genere par le câble lui-meme. Au-dela de cette longueur limite, la solution consiste generalement a transporter en courant continu. Le second facteur est lie au developpement de l’eolien offshore qui necessite de raccorder des puissances de plusieurs centaines de MW au reseau continental au moyen de câbles dont les longueurs peuvent atteindre quelques centaines de km et ce qui necessite donc le transport en HVDC. De facon concrete, plusieurs projets de transmission HVDC ont ete planifies par le gestionnaire du reseau de transport francais RTE. Le projet INELFE, par exemple, est une interconnexion HVDC entre la France et l’Espagne, pour la transmission de 2000 MW. Cette these est financee par RTE, dans le but de modeliser, simuler en temps reel et etudier les risques d’interaction entre ces liaisons HVDC. La particularite des ouvrages de transport en courant continu est de faire appel a un controle commande dedie qui va en grande partie determiner le comportement dynamique de la liaison tant sur des grosses perturbations (defauts sur le reseau) qu’en regime de petites variations. Il existe differentes topologies VSC (Voltage Source Converter), comme les convertisseurs a deux niveaux, les convertisseurs multi-niveaux avec des diodes et les convertisseurs multiniveaux avec des condensateurs flottants. Toutefois, en raison de la complexite des commandes et des limites pratiques, les installations de systeme HVDC-VSC ont ete limitees a des convertisseurs a deux niveaux et a trois niveaux. Recemment, la mise au point de la technologie modulaire appele MMC (Modular Multilevel Converter [Siemens]-[Alstom]) ou CTL (Cascaded Two Level topology [ABB]) en fonction des industriels, a permis de surmonter les limites des autres topologies multi-niveaux pour les applications HVDC. Cette topologie est constituee de plusieurs sous-modules connectes en series. Chaque sous-module contient deux IGBTs avec leurs diodes antiparalleles et un condensateur qui sert comme accumulateur d’energie.----------ABSTRACT High-voltage direct current transmission systems (HVDC) are rapidly expanding in the world. Two main factors are responsible for this expansion. The first is related to the difficulty of building new overhead lines to ensure the development of high-voltage AC grids, which makes the usage of underground cables more common. However, the use of such cables is limited in length to a few tens of km because of the capacitive current generated by the cable itself. Beyond this length limit, the solution is usually to transmit in DC. The second factor is related to the development of offshore wind power plants that require connecting powers of several hundred of MW to the mainland grid by cables whose lengths can reach several hundreds of km and consequently require HVDC transmission system. Several HVDC projects are currently planned and developed by the French transmission system operator RTE. One of such projects is the INELFE interconnection project, with a capacity of 2,000 MW, between France and Spain. This thesis has been funded by RTE, in order to model and simulate in off-line and real time modes, modern HVDC interconnections. The delivered simulation means are used to examine targeted HVDC system performances and risks of abnormal interactions with surrounding power systems. The particularity of the INELFE HVDC system is the usage of a dedicated control system that will largely determine the dynamic behaviour of the system for both large disturbances (faults on the network) and small perturbations (power step changes). Various VSC topologies, including the conventional two-level, multi-level diode-clamped and floating capacitor multi-level converters, have been proposed and reported in the literature. However, due to the complexity of controls and practical limitations, the VSC-HVDC system installations have been limited to the two-level and three-level diode-clamped converters. Recently, the development of modular technology called MMC (Modular Multilevel Converter [Siemens] - [Alstom]) or CTL (Cascaded Two Level topology [ABB]) has allowed to overcome existing limitations. This topology consists of several sub-modules connected in series. Each submodule contains two IGBTs with antiparallel diodes and a capacitor that act as energy storage. The control of these IGBTs allows connecting and disconnecting the capacitor on the network.

[1]  Guan-Chyun Hsieh,et al.  Phase-locked loop techniques. A survey , 1996, IEEE Trans. Ind. Electron..

[2]  Xavier Guillaud,et al.  Control and performance of modular multilevel converters currents using resonant controller , 2014, IECON 2014 - 40th Annual Conference of the IEEE Industrial Electronics Society.

[3]  Jean Mahseredjian,et al.  Modular Multilevel Converter Models for Electromagnetic Transients , 2014, IEEE Transactions on Power Delivery.

[4]  Simon P. Teeuwsen,et al.  Simplified dynamic model of a voltage-sourced converter with modular multilevel converter design , 2009, 2009 IEEE/PES Power Systems Conference and Exposition.

[5]  Rainer Marquardt,et al.  Modular Multilevel Converter topologies with DC-Short circuit current limitation , 2011, 8th International Conference on Power Electronics - ECCE Asia.

[6]  K. Ilves,et al.  Frequency-domain modeling of modular multilevel converters , 2012, IECON 2012 - 38th Annual Conference on IEEE Industrial Electronics Society.

[7]  Jean-Pierre David,et al.  Self-Alignment Schemes for the Implementation of Addition-Related Floating-Point Operators , 2013, TRETS.

[8]  J. Svensson,et al.  Vector current controlled voltage source converter-deadbeat control and saturation strategies , 2002 .

[9]  Zhe Chen,et al.  Stability analysis of multi-infeed HVDC system applying VSC-HVDC , 2010, IEEE PES General Meeting.

[10]  Jean Mahseredjian,et al.  Effective floating-point calculation engines intended for the FPGA-based HIL simulation , 2012, 2012 IEEE International Symposium on Industrial Electronics.

[11]  Fang Zheng Peng,et al.  Multilevel converters-a new breed of power converters , 1995, IAS '95. Conference Record of the 1995 IEEE Industry Applications Conference Thirtieth IAS Annual Meeting.

[12]  A. Gavrilovic,et al.  AC/DC system strength as indicated by short circuit ratios , 1991 .

[13]  D. Retzmann,et al.  Prospects of multilevel VSC technologies for power transmission , 2008, 2008 IEEE/PES Transmission and Distribution Conference and Exposition.

[14]  Lie Xu,et al.  VSC transmission model for analytical studies , 2003, 2003 IEEE Power Engineering Society General Meeting (IEEE Cat. No.03CH37491).

[15]  O. Anaya-Lara,et al.  Small-Signal Stability Analysis of Multi-Terminal VSC-Based DC Transmission Systems , 2012, IEEE Transactions on Power Systems.

[16]  Dushan Boroyevich,et al.  State-space switching model of modular multilevel converters , 2013, 2013 IEEE 14th Workshop on Control and Modeling for Power Electronics (COMPEL).

[17]  Steven Liu,et al.  Integrated current control, energy control and energy balancing of Modular Multilevel Converters , 2010, IECON 2010 - 36th Annual Conference on IEEE Industrial Electronics Society.

[18]  Jovica V. Milanovic,et al.  Interactions between STATCOM and VSC HVDC in dynamic GB system , 2014 .

[19]  Jean Mahseredjian,et al.  Real-Time Simulation of MMCs Using CPU and FPGA , 2015, IEEE Transactions on Power Electronics.

[20]  Staffan Norrga,et al.  Validation of the continuous model of the modular multilevel converter with blocking/deblocking capability , 2012 .

[21]  Jiuping Pan,et al.  Stability Analysis of VSC MTDC Grids Connected to Multimachine AC Systems , 2011, IEEE Transactions on Power Delivery.

[22]  V.G. Agelidis,et al.  VSC-Based HVDC Power Transmission Systems: An Overview , 2009, IEEE Transactions on Power Electronics.

[23]  N M MacLeod,et al.  A new simulator laboratory for research and development of VSC HVDC topologies and control algorithms , 2010 .

[24]  Jean Mahseredjian,et al.  A combined state-space nodal method for the simulation of power system transients , 2011, 2011 IEEE Power and Energy Society General Meeting.

[25]  H. Ouquelle,et al.  An average value model-based design of a deadbeat controller for VSC-HVDC transmission link , 2009, 2009 IEEE Power & Energy Society General Meeting.

[26]  A. S. Morched,et al.  A universal model for accurate calculation of electromagnetic transients on overhead lines and underground cables , 1999 .

[27]  Jean Mahseredjian,et al.  A fully automated reconfigurable calculation engine dedicated to the real-time simulation of high switching frequency power electronic circuits , 2013, Math. Comput. Simul..

[28]  F. Colas,et al.  Method for small signal stability analysis of VSC-MTDC grids , 2012, 2012 IEEE Power and Energy Society General Meeting.

[29]  J. M. Noworolski,et al.  Generalized averaging method for power conversion circuits , 1990, 21st Annual IEEE Conference on Power Electronics Specialists.

[30]  Lie Xu,et al.  Reduced switching-frequency modulation and circulating current suppression for modular multilevel converters , 2012, PES T&D 2012.

[31]  Maryam Saeedifard,et al.  Reduced switching-frequency voltage-balancing strategies for modular multilevel HVDC converters , 2013, 2014 IEEE PES General Meeting | Conference & Exposition.

[32]  L.G. Franquelo,et al.  The age of multilevel converters arrives , 2008, IEEE Industrial Electronics Magazine.

[33]  G. Andersson,et al.  Analysis of HVDC converters connected to weak AC systems , 1990 .

[34]  J. Jatskevich,et al.  Dynamic Averaged and Simplified Models for MMC-Based HVDC Transmission Systems , 2013, IEEE Transactions on Power Delivery.

[35]  Sebastien Dennetiere,et al.  The CIGRE B4 DC Grid Test System , 2013 .

[36]  O. Anaya-Lara,et al.  Grid integration of a large offshore wind farm using VSC-HVDC in parallel with an AC submarine cable , 2009, 2009 44th International Universities Power Engineering Conference (UPEC).

[37]  Jean Mahseredjian,et al.  Real Time simulation of MMCs using the State- Space Nodal Approach , 2013 .

[38]  Reza Iravani,et al.  Dynamic performance of a modular multilevel back-to-back HVDC system , 2010, 2011 IEEE Power and Energy Society General Meeting.

[39]  Jean Mahseredjian,et al.  Interactions studies of HVDC–MMC link embedded in an AC grid , 2016 .

[40]  Massimo Bongiorno,et al.  Input-Admittance Calculation and Shaping for Controlled Voltage-Source Converters , 2007, IEEE Transactions on Industrial Electronics.

[41]  Cuiqing Du VSC-HVDC for Industrial Power Systems , 2007 .

[42]  Staffan Norrga,et al.  Dynamic Analysis of Modular Multilevel Converters , 2013, IEEE Transactions on Industrial Electronics.

[43]  G. Venkataramanan,et al.  Simplified dynamics and control of Modular Multilevel Converter based on a terminal behavioral model , 2012, 2012 IEEE Energy Conversion Congress and Exposition (ECCE).

[44]  Lidong Zhang Modeling and Control of VSC-HVDC Links Connected to Weak AC Systems , 2010 .

[45]  C. D. Barker,et al.  Reactive power loading of components within a modular multi-level HVDC VSC converter , 2011, 2011 IEEE Electrical Power and Energy Conference.

[46]  Marta Molinas,et al.  An Energy-Based Controller for HVDC Modular Multilevel Converter in Decoupled Double Synchronous Reference Frame for Voltage Oscillation Reduction , 2013, IEEE Transactions on Industrial Electronics.

[47]  J. A. Barrena,et al.  Modulation of Modular Multilevel Converter for HVDC application , 2010, Proceedings of 14th International Power Electronics and Motion Control Conference EPE-PEMC 2010.

[48]  Philip T. Krein,et al.  On the use of averaging for the analysis of power electronic systems , 1989 .

[49]  Guangfu Tang,et al.  New technologies of voltage source converter (VSC) for HVDC transmission system based on VSC , 2008, 2008 IEEE Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy in the 21st Century.

[50]  B. T. Ooi,et al.  Optimal Acquisition and Aggregation of Offshore Wind Power by Multiterminal Voltage-Source HVdc , 2002, IEEE Power Engineering Review.

[51]  Jean Mahseredjian,et al.  Power converter simulation module connected to the EMTP , 1991 .

[52]  Christopher Edwards,et al.  Anti-windup and bumpless-transfer schemes , 1998, Autom..

[53]  P. Delarue,et al.  Energetic macroscopic representation and inversion based control of a modular multilevel converter , 2013, 2013 15th European Conference on Power Electronics and Applications (EPE).

[54]  Slobodan Cuk,et al.  A general unified approach to modelling switching-converter power stages , 1976, 1970 IEEE Power Electronics Specialists Conference.

[55]  Jean Mahseredjian,et al.  On a new approach for the simulation of transients in power systems , 2007 .

[56]  D. Jovcic,et al.  Small signal modelling and stability analysis of multiterminal VSC-HVDC , 2011, Proceedings of the 2011 14th European Conference on Power Electronics and Applications.

[57]  Rainer Marquardt,et al.  An innovative modular multilevel converter topology suitable for a wide power range , 2003, 2003 IEEE Bologna Power Tech Conference Proceedings,.

[58]  Lie Xu,et al.  Topologies for VSC transmission , 2001 .

[59]  M. Ciobotaru,et al.  Effect of redundant sub-module utilization on modular multilevel converters , 2012, 2012 IEEE International Conference on Industrial Technology.

[60]  Xiguo Gong A 3.3kV IGBT module and application in modular multilevel converter for HVDC , 2012, 2012 IEEE International Symposium on Industrial Electronics.

[61]  Antonio G. M. Strollo,et al.  A new IGBT circuit model for SPICE simulation , 1997, PESC97. Record 28th Annual IEEE Power Electronics Specialists Conference. Formerly Power Conditioning Specialists Conference 1970-71. Power Processing and Electronic Specialists Conference 1972.

[62]  Zheng Xu,et al.  Impact of Sampling Frequency on Harmonic Distortion for Modular Multilevel Converter , 2011, IEEE Transactions on Power Delivery.

[63]  Jean Mahseredjian,et al.  MMC Capacitor Voltage Decoupling and Balancing Controls , 2015, IEEE Transactions on Power Delivery.

[64]  L. Soder,et al.  Control of a VSC-HVDC Operating in Parallel with AC Transmission Lines , 2006, 2006 IEEE/PES Transmission & Distribution Conference and Exposition: Latin America.

[65]  J. Mahseredjian,et al.  Computation of power system transients: Modeling portability , 2009, 2009 IEEE Power & Energy Society General Meeting.

[66]  P. Kundur,et al.  Power system stability and control , 1994 .

[67]  H. Jin Behavior-mode simulation of power electronic circuits , 1997 .

[68]  K. Ilves,et al.  Open-Loop Control of Modular Multilevel Converters Using Estimation of Stored Energy , 2011, IEEE Transactions on Industry Applications.

[69]  Jean Mahseredjian,et al.  Detailed and Averaged Models for a 401-Level MMC–HVDC System , 2012 .

[70]  Jean Mahseredjian,et al.  Short-circuit current contribution of converter interfaced wind turbines and the impact on system protection , 2013, 2013 IREP Symposium Bulk Power System Dynamics and Control - IX Optimization, Security and Control of the Emerging Power Grid.

[71]  Marian P. Kazmierkowski,et al.  Current control techniques for three-phase voltage-source PWM converters: a survey , 1998, IEEE Trans. Ind. Electron..

[72]  Marc Hiller,et al.  Analysis and Simulation of a 6 kV, 6 MVA Modular Multilevel Converter , 2009, 2009 35th Annual Conference of IEEE Industrial Electronics.

[73]  Hans-Peter Nee,et al.  On dynamics and voltage control of the Modular Multilevel Converter , 2009, 2009 13th European Conference on Power Electronics and Applications.

[74]  H. Akagi,et al.  PWM control and experiment of modular multilevel converters , 2008, 2008 IEEE Power Electronics Specialists Conference.

[75]  Lennart Harnefors,et al.  VSC-HVDC Transmission with Cascaded Two-Level Converters , 2010 .

[76]  U N Gnanarathna,et al.  Efficient Modeling of Modular Multilevel HVDC Converters (MMC) on Electromagnetic Transient Simulation Programs , 2011, IEEE Transactions on Power Delivery.

[77]  S. Allebrod,et al.  New transformerless, scalable Modular Multilevel Converters for HVDC-transmission , 2008, 2008 IEEE Power Electronics Specialists Conference.

[78]  C. Vlad,et al.  Analysis of dynamic behavior of Modular Multilevel Converters: Modeling and control , 2012, 2012 16th International Conference on System Theory, Control and Computing (ICSTCC).