Fast and efficient exact synthesis of single-qubit unitaries generated by clifford and T gates

In this paper, we show the equivalence of the set of unitaries computable by the circuits over the Clifford and T library and the set of unitaries over the ring Z[1/√2, i], in the single-qubit case. We report an efficient synthesis algorithm, with an exact optimality guarantee on the number of Hadamard and T gates used. We conjecture that the equivalence of the sets of unitaries implementable by circuits over the Clifford and T library and unitaries over the ring Z[1/√2, i] holds in the n-qubit case.

[1]  Austin G. Fowler Constructing arbitrary Steane code single logical qubit fault-tolerant gates , 2011, Quantum Inf. Comput..

[2]  Alex Bocharov,et al.  Resource-optimal single-qubit quantum circuits. , 2012, Physical review letters.

[3]  Michael A. Nielsen,et al.  The Solovay-Kitaev algorithm , 2006, Quantum Inf. Comput..

[4]  Mikhail N. Vyalyi,et al.  Classical and Quantum Computation , 2002, Graduate studies in mathematics.

[5]  John Watrous,et al.  Semidefinite Programs for Completely Bounded Norms , 2009, Theory Comput..

[6]  J. A. Jones,et al.  Tackling systematic errors in quantum logic gates with composite rotations , 2003 .

[7]  Maho Nakata,et al.  A numerical evaluation of highly accurate multiple-precision arithmetic version of semidefinite programming solver: SDPA-GMP, -QD and -DD. , 2010, 2010 IEEE International Symposium on Computer-Aided Control System Design.

[8]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[9]  Barenco,et al.  Elementary gates for quantum computation. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[10]  Austin G. Fowler Towards Large-Scale Quantum Computation , 2005 .

[11]  M. Mosca,et al.  A Meet-in-the-Middle Algorithm for Fast Synthesis of Depth-Optimal Quantum Circuits , 2012, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[12]  Alexei Y. Kitaev,et al.  Quantum measurements and the Abelian Stabilizer Problem , 1995, Electron. Colloquium Comput. Complex..

[13]  Kazuyuki Amano,et al.  Representation of Quantum Circuits with Clifford and $\pi/8$ Gates , 2008, 0806.3834.

[14]  Krysta M. Svore,et al.  A Depth-Optimal Canonical Form for Single-qubit Quantum Circuits , 2012, 1206.3223.