Cornering sgluons with four-top-quark events

Abstract The existence of colour-octet scalar states, often dubbed sgluons, is predicted in many extensions of the Standard Model of particle physics, such as supersymmetric realisations featuring Dirac gauginos. Such states have a large pair-production rate at hadron colliders and mainly decay into pairs of jets and top quarks. Consequently, they represent a primary target for experimental searches for new resonances in the multijet and multitop channels at the Large Hadron Collider. Adopting a phenomenologically-motivated simplified model, we reinterpret the results of a recent experimental search for the four-top-quark Standard Model signal, from which we constrain the sgluon mass to be larger than about 1.06 TeV. We additionally consider how modifications of the existing four-top-quark studies could enhance our ability to unravel the presence of scalar octets in data.

[1]  T. R. Fernandez Perez Tomei,et al.  Search for new physics in same-sign dilepton events in proton–proton collisions at $$\sqrt{s} = 13\,\text {TeV} $$s=13TeV , 2016, The European physical journal. C, Particles and fields.

[2]  P. D. Luckey,et al.  Measurement of normalized differential tt¯ cross sections in the dilepton channel from pp collisions at √s = 13 TeV , 2018 .

[3]  Graham D. Kribs,et al.  Flavor in Supersymmetry with an Extended R-symmetry , 2007, 0712.2039.

[4]  M. McCullough,et al.  Models of Goldstone Gauginos , 2015, 1502.05055.

[5]  A. S. Mete,et al.  Measurements of tt¯ differential cross-sections of highly boosted top quarks decaying to all-hadronic final states in pp collisions at s=13  TeV using the ATLAS detector , 2018, Physical Review D.

[6]  Claude Duhr,et al.  Computing decay rates for new physics theories with FeynRules and MadGraph 5_aMC@NLO , 2015, Comput. Phys. Commun..

[7]  M. Goodsell,et al.  Dirac gauginos in low scale supersymmetry breaking , 2014, 1407.5076.

[8]  Michael Gerbush,et al.  Color-octet scalars at the CERN LHC , 2007, 0710.3133.

[9]  T. Tait,et al.  Manifestations of Top Compositeness at Colliders , 2009, 0901.3808.

[10]  R. Frederix,et al.  Automatic spin-entangled decays of heavy resonances in Monte Carlo simulations , 2012, 1212.3460.

[11]  M. P. Casado,et al.  A search for pair-produced resonances in four-jet final states at $$\sqrt{s}=13$$s=13$$\text {TeV}$$TeV with the ATLAS detector , 2018, The European physical journal. C, Particles and fields.

[12]  G. Valencia Colour Octet Extension of 2HDM , 2016, 1606.02810.

[13]  T. Hahn,et al.  Generating Feynman Diagrams and Amplitudes with FeynArts 3 , 2001 .

[14]  Pedro Antonio Gutiérrez,et al.  Measurements of top-quark pair differential cross-sections in the lepton+jets channel in pp collisions at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\odds , 2015, The European Physical Journal C.

[15]  ATLAS Collaboratio,et al.  University Search for heavy particles decaying into top-quark pairs using lepton-plus-jets events in proton-proton collisions at s=13 TeV with the ATLAS detector , 2018 .

[16]  V. M. Ghete,et al.  Measurement of normalized differential tt¯$$ \mathrm{t}\overline{\mathrm{t}} $$ cross sections in the dilepton channel from pp collisions at s=13$$ \sqrt{s}=13 $$ TeV , 2018 .

[17]  Search for tt¯$$ \mathrm{t}\overline{\mathrm{t}} $$ resonances in highly boosted lepton+jets and fully hadronic final states in proton-proton collisions at s=13$$ \sqrt{s}=13 $$ TeV , 2017 .

[18]  W. Kotlarski Sgluons in the same-sign lepton searches , 2016, 1608.00915.

[19]  W. Porod,et al.  Constrained minimal Dirac gaugino supersymmetric standard model , 2014, 1403.5122.

[20]  Samuel Calvet,et al.  Searching for sgluons in multitop events at a center-of-mass energy of 8 TeV , 2012, 1212.3360.

[21]  F. Blekman,et al.  Probing top-philic sgluons with LHC Run I data , 2015, 1501.07580.

[22]  Chris Wymant,et al.  Designing and recasting LHC analyses with MadAnalysis 5 , 2014, 1405.3982.

[23]  A. S. Mete,et al.  Measurements of top-quark pair differential cross-sections in the lepton+jets channel in pp collisions at s=13\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\ , 2017, Journal of High Energy Physics.

[24]  Tilman Plehn,et al.  Seeking Sgluons , 2008, 0810.3919.

[25]  G. Valencia,et al.  LHC constraints on color octet scalars , 2017, 1703.04164.

[26]  P. Zerwas,et al.  Color-Octet Scalars of N=2 Supersymmetry at the LHC , 2008, 0812.3586.

[27]  Tilman Plehn,et al.  Sgluon Pair Production to Next-to-Leading Order , 2012, 1203.6358.

[28]  R. Frederix,et al.  The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations , 2014, 1405.0301.

[29]  Peter Skands,et al.  An introduction to PYTHIA 8.2 , 2014, Comput. Phys. Commun..

[30]  J. Latorre,et al.  Parton distributions for the LHC run II , 2014, 1410.8849.

[31]  A. Pomarol,et al.  Top Quark Compositeness: Feasibility and Implications , 2008, 0806.3247.

[32]  T. Tait,et al.  Top compositeness at the Tevatron and LHC , 2007, 0712.3057.

[33]  Benjamin Fuks,et al.  MadAnalysis 5, a user-friendly framework for collider phenomenology , 2012, Comput. Phys. Commun..

[34]  M. McCullough,et al.  Goldstone Gauginos. , 2015, Physical review letters.

[35]  V. M. Ghete,et al.  Measurement of differential cross sections for top quark pair production using the lepton+jets final state in proton-proton collisions at 13 TeV , 2017 .

[36]  Resonances from two universal extra dimensions , 2006, hep-ph/0601186.

[37]  Searches for $ \Lambda_b^0 $ and $ \Xi_b^0 $ decays to $ K_{\mathrm{S}}^0p{\pi^{-}} $ and $ K_{\mathrm{S}}^0p{K^{-}} $ final states with first observation of the $ \Lambda_b^0\to K_{\mathrm{S}}^0p{\pi^{-}} $ decay , 2014, 1402.0770.

[38]  J. Caudron,et al.  Search for heavy particles decaying into top-quark pairs using lepton-plus-jets events in proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector , 2018, 1804.10823.

[39]  S. Schumann,et al.  Constraining scalar resonances with top-quark pair production at the LHC , 2017, Journal of High Energy Physics.

[40]  P. Fayet Fermi-Bose Hypersymmetry , 1976 .

[41]  A. Renaud,et al.  Hadronically decaying color-adjoint scalars at the LHC , 2011, 1108.2957.

[42]  Bruce Yabsley,et al.  Search for new phenomena in dijet events using 37 fb-1 of pp collision data collected at s =13 TeV with the ATLAS detector , 2017 .

[43]  R. Sundrum,et al.  Vectorlike confinement at the LHC , 2009, 0906.0577.

[44]  Claude Duhr,et al.  UFO - The Universal FeynRules Output , 2011, Comput. Phys. Commun..

[45]  Benjamin Fuks,et al.  MadAnalysis5 implementation of the four-top analysis of CMS with 35.9 fb-1 of data (CMS-TOP-17-009) , 2018 .

[46]  A. Salam,et al.  Supersymmetry and fermion-number conservation , 1975 .

[47]  Claude Duhr,et al.  FeynRules 2.0 - A complete toolbox for tree-level phenomenology , 2013, Comput. Phys. Commun..

[48]  M. Cacciari,et al.  The anti-$k_t$ jet clustering algorithm , 2008, 0802.1189.

[49]  Céline Degrande,et al.  Automatic evaluation of UV and R2 terms for beyond the Standard Model Lagrangians: A proof-of-principle , 2014, Comput. Phys. Commun..

[50]  Pierre Fayet,et al.  Supergauge invariant extension of the Higgs mechanism and a model for the electron and its neutrino , 1975 .

[51]  V. Hirschi,et al.  Automated next-to-leading order predictions for new physics at the LHC: The case of colored scalar pair production , 2014, 1412.5589.

[52]  E. Conte,et al.  Toward a public analysis database for LHC new physics searches using MADANALYSIS 5 , 2014, 1407.3278.

[53]  R. Frederix,et al.  Large NLO corrections in tt¯ W ± and tt¯ tt¯ hadroproduction from supposedly subleading EW contributions , 2018 .

[54]  M. Goodsell,et al.  Higgs alignment from extended supersymmetry , 2018, The European Physical Journal C.

[55]  D. Whiteson,et al.  Limits on four-top-quark production from the ATLAS same-sign top-quark search , 2012, 1203.5862.

[56]  Introduction to S-Duality in N=2 Supersymmetric Gauge Theory:A pedagogical review of the work of Sei , 1997, hep-th/9701069.

[57]  J. Favereau,et al.  DELPHES 3: a modular framework for fast simulation of a generic collider experiment , 2013, Journal of High Energy Physics.

[58]  Li-Jun Hu Search for low-mass pair-produced dijet resonances using jet substructure techniques in proton-proton collisions at a center-of-mass energy of s=13 TeV , 2016 .

[59]  M. Goodsell,et al.  Dirac gauginos in general gauge mediation , 2008, 0811.4409.

[60]  C. Collaboration,et al.  Measurement of differential cross sections for top quark pair production using the lepton+jets final state in proton-proton collisions at 13 TeV , 2016, 1610.04191.

[61]  V. Khachatryan,et al.  Search for New Physics in Same-Sign Dilepton Events in Proton–Proton collisions at √s = 13 TeV , 2016 .

[62]  J. Harz,et al.  The Di-Photon Excess in a Perturbative SUSY Model , 2016, 1605.05313.

[63]  V. M. Ghete,et al.  Search for standard model production of four top quarks with same-sign and multilepton final states in proton–proton collisions at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{ , 2017, The European Physical Journal. C, Particles and Fields.

[64]  Sahal Yacoob,et al.  Search for squarks and gluinos in final states with jets and missing transverse momentum using 36 fb$^{-1}$ of $\sqrt{s}$=13 TeV $pp$ collision data with the ATLAS detector , 2017, 1712.02332.

[65]  M. Cacciari,et al.  FastJet user manual , 2011, 1111.6097.

[66]  Patrick J. Fox,et al.  Dirac gaugino masses and supersoft supersymmetry breaking , 2002, hep-ph/0206096.