About the Enumeration Algorithms of Closed Sets

This paper presents a review of enumeration technics used for the generation of closed sets. A link is made between classical enumeration algorithms of objects in graphs and algorithms for the enumeration of closed sets. A unified framework, the transition graph, is presented. It allows to better explain the behavior of the enumeration algorithms and to compare them independently of the data structures they use.

[1]  Lhouari Nourine,et al.  Enumeration aspects of maximal cliques and bicliques , 2009, Discret. Appl. Math..

[2]  J. Bordat Calcul pratique du treillis de Galois d'une correspondance , 1986 .

[3]  Jeremy P. Spinrad,et al.  Very Fast Instances for Concept Generation , 2006, ICFCA.

[4]  Sergei O. Kuznetsov,et al.  Some decision and counting problems of the Duquenne-Guigues basis of implications , 2008, Discret. Appl. Math..

[5]  Hiroki Arimura,et al.  LCM ver.3: collaboration of array, bitmap and prefix tree for frequent itemset mining , 2005 .

[6]  Mohammed J. Zaki,et al.  Efficient algorithms for mining closed itemsets and their lattice structure , 2005, IEEE Transactions on Knowledge and Data Engineering.

[7]  Bernhard Ganter,et al.  Two Basic Algorithms in Concept Analysis , 2010, ICFCA.

[8]  Nicolas Pasquier,et al.  Discovering Frequent Closed Itemsets for Association Rules , 1999, ICDT.

[9]  Leonid Khachiyan,et al.  On the Complexity of Dualization of Monotone Disjunctive Normal Forms , 1996, J. Algorithms.

[10]  B. Ganter,et al.  Finding all closed sets: A general approach , 1991 .

[11]  Torben Hagerup,et al.  Algorithm Theory - SWAT 2004 , 2004, Lecture Notes in Computer Science.

[12]  Baris Sertkaya Some Computational Problems Related to Pseudo-intents , 2009, ICFCA.

[13]  Engelbert Mephu Nguifo,et al.  A Comparative Study of FCA-Based Supervised Classification Algorithms , 2004, ICFCA.

[14]  Carla Savage,et al.  A Survey of Combinatorial Gray Codes , 1997, SIAM Rev..

[15]  Kazuhisa Makino,et al.  New Algorithms for Enumerating All Maximal Cliques , 2004, SWAT.

[16]  Sergei O. Kuznetsov,et al.  Comparing performance of algorithms for generating concept lattices , 2002, J. Exp. Theor. Artif. Intell..

[17]  Hiroki Arimura,et al.  LCM: An Efficient Algorithm for Enumerating Frequent Closed Item Sets , 2003, FIMI.

[18]  Jian Pei,et al.  CLOSET: An Efficient Algorithm for Mining Frequent Closed Itemsets , 2000, ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery.

[19]  Hiroki Arimura,et al.  LCM ver. 2: Efficient Mining Algorithms for Frequent/Closed/Maximal Itemsets , 2004, FIMI.

[20]  Jian Pei,et al.  CLOSET+: searching for the best strategies for mining frequent closed itemsets , 2003, KDD '03.

[21]  Engelbert Mephu Nguifo,et al.  A Parallel Algorithm to Generate Formal Concepts for Large Data , 2004, ICFCA.

[22]  Malcolm P. Atkinson,et al.  Issues Raised by Three Years of Developing PJama: An Orthogonally Persistent Platform for Java , 1999, ICDT.

[23]  Edwin Diday,et al.  Maximal and Stochastic Galois Lattices , 2003, Discret. Appl. Math..

[24]  Mohammed J. Zaki,et al.  CHARM: An Efficient Algorithm for Closed Itemset Mining , 2002, SDM.

[25]  Lhouari Nourine,et al.  A Fast Algorithm for Building Lattices , 1999, Inf. Process. Lett..

[26]  Mihalis Yannakakis,et al.  On Generating All Maximal Independent Sets , 1988, Inf. Process. Lett..

[27]  Shuji Tsukiyama,et al.  A New Algorithm for Generating All the Maximal Independent Sets , 1977, SIAM J. Comput..

[28]  Georg Gottlob,et al.  New Results on Monotone Dualization and Generating Hypergraph Transversals , 2003, SIAM J. Comput..

[29]  Leslie G. Valiant,et al.  The Complexity of Enumeration and Reliability Problems , 1979, SIAM J. Comput..