Effect of discretization error and adaptive mesh generation in diffuse optical absorption imaging: I

In diffuse optical tomography (DOT), the discretization error in the numerical solutions of the forward and inverse problems results in error in the reconstructed optical images. In this first part of our work, we analyse the error in the reconstructed optical absorption images, resulting from the discretization of the forward and inverse problems. Our analysis identifies several factors which influence the extent to which the discretization impacts on the accuracy of the reconstructed images. For example, the mutual dependence of the forward and inverse problems, the number of sources and detectors, their configuration and their orientation with respect to optical absorptive heterogeneities, and the formulation of the inverse problem. As a result, our error analysis shows that the discretization of one problem cannot be considered independent of the other problem. While our analysis focuses specifically on the discretization error in DOT, the approach can be extended to quantify other error sources in DOT and other inverse parameter estimation problems.

[1]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[2]  G. Smith,et al.  Numerical Solution of Partial Differential Equations: Finite Difference Methods , 1978 .

[3]  E. Somersalo,et al.  Approximation errors and model reduction with an application in optical diffusion tomography , 2006 .

[4]  S. Arridge Optical tomography in medical imaging , 1999 .

[5]  R. Kress,et al.  Inverse Acoustic and Electromagnetic Scattering Theory , 1992 .

[6]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[7]  K. Atkinson,et al.  Theoretical Numerical Analysis: A Functional Analysis Framework , 2001 .

[8]  Quing Zhu,et al.  Dual-mesh optical tomography reconstruction method with a depth correction that uses a priori ultrasound information. , 2004, Applied optics.

[9]  R. Kress Linear Integral Equations , 1989 .

[10]  F. Ihlenburg Finite Element Analysis of Acoustic Scattering , 1998 .

[11]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[12]  T. Strouboulis,et al.  Recent experiences with error estimation and adaptivity. Part I: Review of error estimators for scalar elliptic problems , 1992 .

[13]  E Gratton,et al.  Photon density waves scattered from cylindrical inhomogeneities: theory and experiments. , 1998, Applied optics.

[14]  Ruo Li,et al.  Adaptive Finite Element Approximation for Distributed Elliptic Optimal Control Problems , 2002, SIAM J. Control. Optim..

[15]  R. Bank,et al.  Some a posteriori error estimators for elliptic partial differential equations , 1985 .

[16]  Huabei Jiang,et al.  Mesh-based enhancement schemes in diffuse optical tomography. , 2003, Medical physics.

[17]  M Molinari,et al.  Adaptive mesh refinement techniques for electrical impedance tomography. , 2001, Physiological measurement.

[18]  Margaret J. Eppstein,et al.  3-D Bayesian Optical Image Reconstruction with Domain Decomposition , 2001, IEEE Trans. Medical Imaging.

[19]  Birsen Yazici,et al.  Discretization error based mesh generation for diffuse optical tomography , 2005, 34th Applied Imagery and Pattern Recognition Workshop (AIPR'05).

[20]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[21]  G. Hedstrom,et al.  Numerical Solution of Partial Differential Equations , 1966 .

[22]  J. Oden,et al.  A unified approach to a posteriori error estimation using element residual methods , 1993 .

[23]  R. Eymard,et al.  Finite Volume Methods , 2019, Computational Methods for Fluid Dynamics.

[24]  W. Rheinboldt,et al.  Error Estimates for Adaptive Finite Element Computations , 1978 .

[25]  K. Atkinson,et al.  Theoretical Numerical Analysis: A Functional Analysis Framework , 2001 .

[26]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[27]  M. Rivara Mesh Refinement Processes Based on the Generalized Bisection of Simplices , 1984 .

[28]  M. Schweiger,et al.  Image reconstruction in optical tomography. , 1997, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[29]  E. Sevick-Muraca,et al.  Three-dimensional Bayesian optical image reconstruction with domain decomposition , 2001, IEEE Transactions on Medical Imaging.

[30]  A. Joshi,et al.  Adaptive finite element based tomography for fluorescence optical imaging in tissue. , 2004, Optics express.

[31]  Larisa Beilina Adaptive hybrid FEM/FDM methods for inverse scattering problems , 2002 .

[32]  Daniel Daners,et al.  Robin boundary value problems on arbitrary domains , 2000 .

[33]  E. Somersalo,et al.  Statistical and computational inverse problems , 2004 .

[34]  Britton Chance,et al.  An adaptive multigrid algorithm for region of interest diffuse optical tomography , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[35]  Ivo Babuška,et al.  Accuracy estimates and adaptive refinements in finite element computations , 1986 .

[36]  Yongyi Yang,et al.  Tomographic image reconstruction based on a content-adaptive mesh model , 2004, IEEE Transactions on Medical Imaging.