A particle filter for robust calibration of RF ranging systems

This paper describes a robust method for calibrating radio-frequency ranging systems in indoor environments. An approach for outlier rejection is proposed, based on modeling the distribution of the distance-measurement results as a Gaussian-uniform mixture. Using this model, a batch maximum-likelihood and a recursive particle filtering estimator are implemented. The accuracy and robustness of the approach are evaluated by numerical simulations and by comparison with the Cramér-Rao Lower Bound. Finally, the approach is validated on experimental data obtained from a in-house developed Ultra-Wideband indoor ranging system.

[1]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[2]  Marco Dionigi,et al.  A 5.6-GHz UWB Position Measurement System , 2013, IEEE Transactions on Instrumentation and Measurement.

[3]  Daniele Fontanelli,et al.  A Data Fusion Technique for Wireless Ranging Performance Improvement , 2013, IEEE Transactions on Instrumentation and Measurement.

[4]  Alessio De Angelis,et al.  Characterization of a Flexible UWB Sensor for Indoor Localization , 2013, IEEE Transactions on Instrumentation and Measurement.

[5]  Fernando Seco Granja,et al.  Accurate Pedestrian Indoor Navigation by Tightly Coupling Foot-Mounted IMU and RFID Measurements , 2012, IEEE Transactions on Instrumentation and Measurement.

[6]  R.L. Moses,et al.  Locating the nodes: cooperative localization in wireless sensor networks , 2005, IEEE Signal Processing Magazine.

[7]  Juha-Pekka Makela,et al.  Indoor geolocation science and technology , 2002, IEEE Commun. Mag..

[8]  Anthony J. Peyton,et al.  A Three-Dimensional Positioning Algorithm for Networked Wireless Sensors , 2011, IEEE Transactions on Instrumentation and Measurement.

[9]  Michael Muma,et al.  Robust Estimation in Signal Processing: A Tutorial-Style Treatment of Fundamental Concepts , 2012, IEEE Signal Processing Magazine.

[10]  Victoria J. Hodge,et al.  A Survey of Outlier Detection Methodologies , 2004, Artificial Intelligence Review.

[11]  Eric Moulines,et al.  On the use of particle filtering for maximum likelihood parameter estimation , 2005, 2005 13th European Signal Processing Conference.

[12]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[13]  A. Doucet,et al.  Parameter estimation in general state-space models using particle methods , 2003 .

[14]  Paolo Carbone,et al.  Estimation of the Calibration Parameters for an UWB Indoor Positioning System , 2010 .

[15]  Sailes K. Sengijpta Fundamentals of Statistical Signal Processing: Estimation Theory , 1995 .

[16]  Adrian E. Raftery,et al.  Normal uniform mixture differential gene expression detection for cDNA microarrays , 2005, BMC Bioinformatics.

[17]  Fredrik Gustafsson,et al.  Particle filters for positioning, navigation, and tracking , 2002, IEEE Trans. Signal Process..

[18]  Gyula Simon,et al.  Fast Adaptive Acoustic Localization for Sensor Networks , 2011, IEEE Transactions on Instrumentation and Measurement.

[19]  Raymond T. Ng,et al.  Algorithms for Mining Distance-Based Outliers in Large Datasets , 1998, VLDB.

[20]  Alessio De Angelis,et al.  Ranging results using a UWB platform in an indoor environment , 2013, 2013 International Conference on Localization and GNSS (ICL-GNSS).