MRSA Isolates from United States Hospitals Carry dfrG and dfrK Resistance Genes and Succumb to Propargyl-Linked Antifolates.

[1]  P Huovinen,et al.  Trimethoprim and sulfonamide resistance , 1995, Antimicrobial agents and chemotherapy.

[2]  M. Page,et al.  Characterization of the gene for the chromosomal dihydrofolate reductase (DHFR) of Staphylococcus epidermidis ATCC 14990: the origin of the trimethoprim-resistant S1 DHFR from Staphylococcus aureus? , 1995, Journal of bacteriology.

[3]  G. Kaatz,et al.  Inducible NorA-mediated multidrug resistance in Staphylococcus aureus , 1995, Antimicrobial agents and chemotherapy.

[4]  M. Page,et al.  Structure and function of the dihydropteroate synthase from Staphylococcus aureus. , 1997, Journal of molecular biology.

[5]  M. Page,et al.  A single amino acid substitution in Staphylococcus aureus dihydrofolate reductase determines trimethoprim resistance. , 1997, Journal of molecular biology.

[6]  K. Köhrer,et al.  Characterization of grlA, grlB, gyrA, and gyrB Mutations in 116 Unrelated Isolates of Staphylococcus aureus and Effects of Mutations on Ciprofloxacin MIC , 1998, Antimicrobial Agents and Chemotherapy.

[7]  F. Vandenesch,et al.  Involvement of Panton-Valentine leukocidin-producing Staphylococcus aureus in primary skin infections and pneumonia. , 1999, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[8]  D. Daigle,et al.  Prodigious substrate specificity of AAC(6')-APH(2"), an aminoglycoside antibiotic resistance determinant in enterococci and staphylococci. , 1999, Chemistry & biology.

[9]  S. Khan,et al.  Simultaneous detection of erythromycin-resistant methylase genes ermA and ermC from Staphylococcus spp. by multiplex-PCR. , 1999, Molecular and cellular probes.

[10]  G. Kaatz,et al.  Effects of NorA Inhibitors on In Vitro Antibacterial Activities and Postantibiotic Effects of Levofloxacin, Ciprofloxacin, and Norfloxacin in Genetically Related Strains ofStaphylococcus aureus , 1999, Antimicrobial Agents and Chemotherapy.

[11]  B. Cooper,et al.  Expression of resistance to tetracyclines in strains of methicillin-resistant Staphylococcus aureus. , 2000, The Journal of antimicrobial chemotherapy.

[12]  R. Taléns-Visconti,et al.  Small-Colony Mutants of Staphylococcus aureus Allow Selection of Gyrase-Mediated Resistance to Dual-Target Fluoroquinolones , 2002, Antimicrobial Agents and Chemotherapy.

[13]  M. Matsuoka,et al.  Characteristic expression of three genes, msr(A), mph(C) and erm(Y), that confer resistance to macrolide antibiotics on Staphylococcus aureus. , 2003, FEMS microbiology letters.

[14]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[15]  T. Kirikae,et al.  Cloning and Characterization of a Novel Trimethoprim-Resistant Dihydrofolate Reductase from a Nosocomial Isolate of Staphylococcus aureus CM.S2 (IMCJ1454) , 2005, Antimicrobial Agents and Chemotherapy.

[16]  J. Powers,et al.  Strategies for Clinical Management of MRSA in the Community: Summary of an Experts' Meeting Convened by the Centers for Disease Control and Prevention , 2006 .

[17]  T. Lodise,et al.  Burden of Methicillin‐Resistant Staphylococcus aureus: Focus on Clinical and Economic Outcomes , 2007, Pharmacotherapy.

[18]  Rick L. Stevens,et al.  The RAST Server: Rapid Annotations using Subsystems Technology , 2008, BMC Genomics.

[19]  M. Morgan,et al.  Guidelines for UK practice for the diagnosis and management of methicillin-resistant Staphylococcus aureus (MRSA) infections presenting in the community. , 2008, The Journal of antimicrobial chemotherapy.

[20]  S. Schwarz,et al.  Identification of a Plasmid-Borne Resistance Gene Cluster Comprising the Resistance Genes erm(T), dfrK, and tet(L) in a Porcine Methicillin-Resistant Staphylococcus aureus ST398 Strain , 2009, Antimicrobial Agents and Chemotherapy.

[21]  M. Harris,et al.  Structural comparison of chromosomal and exogenous dihydrofolate reductase from Staphylococcus aureus in complex with the potent inhibitor trimethoprim , 2009, Proteins.

[22]  C. Oefner,et al.  Inhibitory properties and X-ray crystallographic study of the binding of AR-101, AR-102 and iclaprim in ternary complexes with NADPH and dihydrofolate reductase from Staphylococcus aureus. , 2009, Acta crystallographica. Section D, Biological crystallography.

[23]  C. Oefner,et al.  Increased hydrophobic interactions of iclaprim with Staphylococcus aureus dihydrofolate reductase are responsible for the increase in affinity and antibacterial activity. , 2009, The Journal of antimicrobial chemotherapy.

[24]  A. Anderson,et al.  Crystal structures of wild-type and mutant methicillin-resistant Staphylococcus aureus dihydrofolate reductase reveal an alternate conformation of NADPH that may be linked to trimethoprim resistance. , 2009, Journal of molecular biology.

[25]  C. Frei,et al.  Trimethoprim-Sulfamethoxazole or Clindamycin for Community-Associated MRSA (CA-MRSA) Skin Infections , 2010, The Journal of the American Board of Family Medicine.

[26]  Bruce R Donald,et al.  Predicting resistance mutations using protein design algorithms , 2010, Proceedings of the National Academy of Sciences.

[27]  H. Miörner,et al.  Evaluating the usefulness of spa typing, in comparison with pulsed-field gel electrophoresis, for epidemiological typing of methicillin-resistant Staphylococcus aureus in a low-prevalence region in Sweden 2000-2004. , 2010, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[28]  A. Anderson,et al.  Towards the understanding of resistance mechanisms in clinically isolated trimethoprim-resistant, methicillin-resistant Staphylococcus aureus dihydrofolate reductase. , 2010, Journal of structural biology.

[29]  Randy J. Read,et al.  Acta Crystallographica Section D Biological , 2003 .

[30]  Sara E Cosgrove,et al.  Clinical practice guidelines by the infectious diseases society of america for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children. , 2011, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[31]  A. Anderson,et al.  Prospective Screening of Novel Antibacterial Inhibitors of Dihydrofolate Reductase for Mutational Resistance , 2012, Antimicrobial Agents and Chemotherapy.

[32]  A. Oliver,et al.  Transferable Multidrug Resistance Plasmid Carrying cfr Associated with tet(L), ant(4′)-Ia, and dfrK Genes from a Clinical Methicillin-Resistant Staphylococcus aureus ST125 Strain , 2012, Antimicrobial Agents and Chemotherapy.

[33]  A. Azhir,et al.  Antibiotics for methicillin-resistant Staphylococcus aureus skin and soft tissue infections: the challenge of outpatient therapy. , 2014, The American journal of emergency medicine.

[34]  Eric Caumes,et al.  Emergence of trimethoprim resistance gene dfrG in Staphylococcus aureus causing human infection and colonization in sub-Saharan Africa and its import to Europe. , 2014, The Journal of antimicrobial chemotherapy.

[35]  N. Priestley,et al.  Crystal Structures of Klebsiella pneumoniae Dihydrofolate Reductase Bound to Propargyl-Linked Antifolates Reveal Features for Potency and Selectivity , 2014, Antimicrobial Agents and Chemotherapy.

[36]  Fangfang Xia,et al.  The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST) , 2013, Nucleic Acids Res..

[37]  René Bergmann,et al.  Factors That Cause Trimethoprim Resistance in Streptococcus pyogenes , 2014, Antimicrobial Agents and Chemotherapy.

[38]  Pablo Gainza,et al.  Protein design algorithms predict viable resistance to an experimental antifolate , 2014, Proceedings of the National Academy of Sciences.

[39]  J. Barreto,et al.  Serum Peak Sulfamethoxazole Concentrations Demonstrate Difficulty in Achieving a Target Range: A Retrospective Cohort Study , 2014, Current therapeutic research, clinical and experimental.

[40]  G. Taylor,et al.  The molecular epidemiology of incident methicillin-resistant Staphylococcus aureus cases among hospitalized patients in Alberta, Canada: a retrospective cohort study , 2015, Antimicrobial Resistance and Infection Control.

[41]  M. Febo,et al.  Corrigendum: Temporal MRI characterization, neurobiochemical and neurobehavioral changes in a mouse repetitive concussive head injury model , 2015, Scientific Reports.

[42]  Fangfang Xia,et al.  RASTtk: A modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes , 2015, Scientific Reports.

[43]  Ronald N. Jones,et al.  Activity of ceftaroline and comparator agents tested against Staphylococcus aureus from patients with bloodstream infections in US medical centres (2009-13). , 2015, The Journal of antimicrobial chemotherapy.

[44]  A. Anderson,et al.  Nonracemic Antifolates Stereoselectively Recruit Alternate Cofactors and Overcome Resistance in S. aureus. , 2015, Journal of the American Chemical Society.

[45]  Zhe Zhang,et al.  Macrolide-lincosamide-streptogramin resistance phenotypes and genotypes of coagulase-positive Staphylococcus aureus and coagulase-negative staphylococcal isolates from bovine mastitis , 2015, BMC Veterinary Research.

[46]  P. V. van Genderen,et al.  Skin and soft tissue infections in intercontinental travellers and the import of multi-resistant Staphylococcus aureus to Europe. , 2015, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[47]  Jianke Wang,et al.  Development of a nanoparticle-assisted PCR (nanoPCR) assay for detection of mink enteritis virus (MEV) and genetic characterization of the NS1 gene in four Chinese MEV strains , 2015, BMC Veterinary Research.

[48]  A. Malm,et al.  The prevalence of genotypes that determine resistance to macrolides, lincosamides, and streptogramins B compared with spiramycin susceptibility among erythromycin-resistant Staphylococcus epidermidis , 2016, Memorias do Instituto Oswaldo Cruz.

[49]  A. Anderson,et al.  Charged Propargyl-Linked Antifolates Reveal Mechanisms of Antifolate Resistance and Inhibit Trimethoprim-Resistant MRSA Strains Possessing Clinically Relevant Mutations. , 2016, Journal of medicinal chemistry.

[50]  N. Priestley,et al.  Charged Nonclassical Antifolates with Activity Against Gram-Positive and Gram-Negative Pathogens. , 2016, ACS medicinal chemistry letters.

[51]  A. Anderson,et al.  Crystal Structures of Trimethoprim-Resistant DfrA1 Rationalize Potent Inhibition by Propargyl-Linked Antifolates. , 2016, ACS infectious diseases.