Hitting Times for Random Walks on Sierpiński Graphs and Hierarchical Graphs

[1]  Yi-Chun Wang,et al.  Hamiltonicity of the basic WK-recursive pyramid with and without faulty nodes , 2015, Theor. Comput. Sci..

[2]  Lali Barrière,et al.  On the hierarchical product of graphs and the generalized binomial tree , 2009 .

[3]  I. Gutman,et al.  Resistance distance and Laplacian spectrum , 2003 .

[4]  Jung-Sheng Fu Hamiltonicity of the WK-recursive network with and without faulty nodes , 2005, IEEE Transactions on Parallel and Distributed Systems.

[5]  Brendan D. McKay,et al.  A new graph product and its spectrum , 1978, Bulletin of the Australian Mathematical Society.

[6]  Yue-Li Wang,et al.  The Hub Number of Sierpiński-Like Graphs , 2011, Theory of Computing Systems.

[7]  István Lukovits,et al.  Extensions of the Wiener Number , 1996, J. Chem. Inf. Comput. Sci..

[8]  Stephen P. Boyd,et al.  Minimizing Effective Resistance of a Graph , 2008, SIAM Rev..

[9]  Christos Faloutsos,et al.  Kronecker Graphs: An Approach to Modeling Networks , 2008, J. Mach. Learn. Res..

[10]  S. Redner A guide to first-passage processes , 2001 .

[11]  E. Winfree,et al.  Algorithmic Self-Assembly of DNA Sierpinski Triangles , 2004, PLoS biology.

[12]  Zhongzhi Zhang,et al.  The number and degree distribution of spanning trees in the Tower of Hanoi graph , 2015, Theor. Comput. Sci..

[13]  Jywe-Fei Fang,et al.  The m-pancycle-connectivity of a WK-Recursive network , 2007, Inf. Sci..

[14]  Alexandre Arenas,et al.  Optimal network topologies for local search with congestion , 2002, Physical review letters.

[15]  Bassam Bamieh,et al.  Consensus and Coherence in Fractal Networks , 2013, IEEE Transactions on Control of Network Systems.

[16]  Simon DeDeo,et al.  Dynamics and processing in finite self-similar networks , 2011, Journal of The Royal Society Interface.

[17]  Peter G. Doyle,et al.  Random Walks and Electric Networks: REFERENCES , 1987 .

[18]  Alexander Blumen,et al.  Strange kinetics of polymeric networks modelled by finite fractals , 2002 .

[19]  S. Klavžar,et al.  Graphs S(n, k) and a Variant of the Tower of Hanoi Problem , 1997 .

[20]  Seok-Ho Hwang,et al.  Nanoassembly of a Fractal Polymer: A Molecular "Sierpinski Hexagonal Gasket" , 2006, Science.

[21]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[22]  Radu Tarca,et al.  IoT Devices Signals Processing Based on Shepard Local Approximation Operators Defined in Riesz MV-Algebras , 2020, Informatica.

[23]  Yi Qi,et al.  Extended corona product as an exactly tractable model for weighted heterogeneous networks , 2017, Comput. J..

[24]  Ali Tizghadam,et al.  Autonomic traffic engineering for network robustness , 2010, IEEE Journal on Selected Areas in Communications.

[25]  Zhongzhi Zhang,et al.  Random walks on dual Sierpinski gaskets , 2011 .

[26]  F. Göbel,et al.  Random walks on graphs , 1974 .

[27]  Lali Barrière,et al.  The generalized hierarchical product of graphs , 2009, Discret. Math..

[28]  Bojan Mohar,et al.  The Quasi-Wiener and the Kirchhoff Indices Coincide , 1996, J. Chem. Inf. Comput. Sci..

[29]  Sandi Klavzar,et al.  The Tower of Hanoi - Myths and Maths , 2013 .

[30]  Yue-Li Wang,et al.  The Outer-connected Domination Number of Sierpiński-like Graphs , 2015, Theory of Computing Systems.

[31]  P. Tetali Random walks and the effective resistance of networks , 1991 .

[32]  C. Sanges,et al.  A recursively scalable network VLSI implementation , 1988, Future Gener. Comput. Syst..

[33]  Zhenming Liu,et al.  On the efficiency of social recommender networks , 2016, 2015 IEEE Conference on Computer Communications (INFOCOM).

[34]  Sandi Klavzar,et al.  A survey and classification of Sierpiński-type graphs , 2017, Discret. Appl. Math..

[35]  Zhongzhi Zhang,et al.  Laplacian spectra of a class of small-world networks and their applications , 2015, Scientific Reports.

[36]  John G. Kemeny,et al.  Finite Markov chains , 1960 .

[37]  Prabhakar Raghavan,et al.  The electrical resistance of a graph captures its commute and cover times , 2005, computational complexity.

[38]  Hamid Sarbazi-Azad,et al.  Some topological and combinatorial properties of WK-recursive mesh and WK-pyramid interconnection networks , 2008, J. Syst. Archit..

[39]  Heiko Rieger,et al.  Random walks on complex networks. , 2004, Physical review letters.

[40]  László Lovász,et al.  Random Walks on Graphs: A Survey , 1993 .

[41]  Kai Wu,et al.  Assembling molecular Sierpiński triangle fractals. , 2015, Nature chemistry.

[42]  Yi Qi,et al.  Consensus in Self-Similar Hierarchical Graphs and Sierpiński Graphs: Convergence Speed, Delay Robustness, and Coherence , 2017, IEEE Transactions on Cybernetics.

[43]  Gen-Huey Chen,et al.  A Shortest-Path Routing Algorithm for Incomplete WK-Recursive Networks , 1997, IEEE Trans. Parallel Distributed Syst..

[44]  Toru Hasunuma,et al.  Structural properties of subdivided-line graphs , 2013, J. Discrete Algorithms.

[45]  Douglas J. Klein,et al.  Molecular cyclicity and centricity of polycyclic graphs. I. Cyclicity based on resistance distances or reciprocal distances , 1994 .

[46]  J. Klafter,et al.  First-passage times in complex scale-invariant media , 2007, Nature.

[47]  Sidney Redner,et al.  A guide to first-passage processes , 2001 .

[48]  Lali Barrière,et al.  The hierarchical product of graphs , 2009, Discret. Appl. Math..

[49]  H E Stanley,et al.  Classes of small-world networks. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[50]  Guojun Li,et al.  The hamiltonicity and path t-coloring of Sierpiński-like graphs , 2012, Discret. Appl. Math..