Position-reconfigurable pinning for magnetic domain wall motion

[1]  D. Lacour,et al.  Tunable Stochasticity in an Artificial Spin Network , 2021, Advanced materials.

[2]  See-Hun Yang,et al.  Ionitronic manipulation of current-induced domain wall motion in synthetic antiferromagnets , 2021, Nature Communications.

[3]  Joshaniel F. K. Cooper,et al.  Dynamically Driven Emergence in a Nanomagnetic System , 2021, Advanced Functional Materials.

[4]  Seungmoo Yang,et al.  Integrated neuromorphic computing networks by artificial spin synapses and spin neurons , 2021, NPG Asia Materials.

[5]  Kab-Jin Kim,et al.  Optimizing the Geometry of Chiral Magnetic Logic Devices , 2020 .

[6]  M. Stiles,et al.  Neuromorphic spintronics , 2020, Nature Electronics.

[7]  Simone Finizio,et al.  Current-driven magnetic domain-wall logic , 2020, Nature.

[8]  Sumit Dutta,et al.  Magnetic domain wall based synaptic and activation function generator for neuromorphic accelerators , 2019, Nano letters.

[9]  W. Lew,et al.  Synaptic element for neuromorphic computing using a magnetic domain wall device with synthetic pinning sites , 2019, Journal of Physics D: Applied Physics.

[10]  J. Sinova,et al.  Current-induced spin-orbit torques in ferromagnetic and antiferromagnetic systems , 2018, Reviews of Modern Physics.

[11]  J. Izaac,et al.  Reconfigurable magnetic domain wall pinning using vortex-generated magnetic fields , 2017, 1702.02536.

[12]  Hyunsoo Yang,et al.  Spin orbit torques and Dzyaloshinskii-Moriya interaction in dual-interfaced Co-Ni multilayers , 2016, Scientific Reports.

[13]  S. Yuasa,et al.  A magnetic synapse: multilevel spin-torque memristor with perpendicular anisotropy , 2016, Scientific Reports.

[14]  Y. Nakatani,et al.  Precise control of magnetic domain wall displacement by a nanosecond current pulse in Co/Ni nanowires , 2015 .

[15]  S. Parkin,et al.  Domain-wall velocities of up to 750 m s(-1) driven by exchange-coupling torque in synthetic antiferromagnets. , 2015, Nature nanotechnology.

[16]  F. García-Sánchez,et al.  The design and verification of MuMax3 , 2014, 1406.7635.

[17]  G. Durin,et al.  Current-driven domain wall mobility in polycrystalline Permalloy nanowires: A numerical study , 2014 .

[18]  H. Ohno,et al.  Interface control of the magnetic chirality in CoFeB/MgO heterostructures with heavy-metal underlayers , 2014, Nature Communications.

[19]  S. Parkin,et al.  Chiral spin torque at magnetic domain walls. , 2013, Nature nanotechnology.

[20]  G. Beach,et al.  Current-driven dynamics of chiral ferromagnetic domain walls. , 2013, Nature materials.

[21]  A. Fert,et al.  Dynamics of Dzyaloshinskii domain walls in ultrathin magnetic films , 2012, 1211.5970.

[22]  Hjm Henk Swagten,et al.  Domain wall depinning governed by the spin Hall effect. , 2012, Nature materials.

[23]  Uwe Bauer,et al.  Electric field control of domain wall propagation in Pt/Co/GdOx films , 2012 .

[24]  C. Rettner,et al.  Dynamics of Magnetic Domain Walls Under Their Own Inertia , 2010, Science.

[25]  K. Shin,et al.  Electric Control of Multiple Domain Walls in Pt/Co/Pt Nanotracks with Perpendicular Magnetic Anisotropy , 2010, 1006.1726.

[26]  K. Shin,et al.  Depinning Field at Notches of Ferromagnetic Nanowires With Perpendicular Magnetic Anisotropy , 2009, IEEE Transactions on Magnetics.

[27]  Lars Bocklage,et al.  Direct observation of stochastic domain-wall depinning in magnetic nanowires. , 2009, Physical review letters.

[28]  S. Parkin,et al.  Magnetic Domain-Wall Racetrack Memory , 2008, Science.

[29]  Luc Thomas,et al.  Dependence of current and field driven depinning of domain walls on their structure and chirality in permalloy nanowires. , 2006, Physical review letters.

[30]  D Petit,et al.  Magnetic Domain-Wall Logic , 2005, Science.

[31]  M. Kläui,et al.  Vortex circulation control in mesoscopic ring magnets , 2001 .

[32]  Parkin,et al.  Spin engineering: Direct determination of the Ruderman-Kittel-Kasuya-Yosida far-field range function in ruthenium. , 1991, Physical review. B, Condensed matter.

[33]  Yafet Ruderman-Kittel-Kasuya-Yosida range function of a one-dimensional free-electron gas. , 1987, Physical review. B, Condensed matter.

[34]  T. Moriya Anisotropic Superexchange Interaction and Weak Ferromagnetism , 1960 .

[35]  C. Medaglia,et al.  A Numerical Study , 2005 .