A synergistic strategy for fabricating an ultralight and thermal insulating aramid nanofiber/polyimide aerogel

A synergistic strategy was proposed to fabricate an ultralight aramid nanofiber/polyimide (ANF/PI) composite aerogel (5.18 mg cm−3), which was highly compressible and low thermal conductivity (28.6 ± 0.53 mW (m K)−1).

[1]  Tingting Wu,et al.  Highly compressible and anisotropic polyimide aerogels containing aramid nanofibers , 2020 .

[2]  B. Markert,et al.  Molecular dynamics simulations of silica aerogel nanocomposites reinforced by glass fibers, graphene sheets and carbon nanotubes: A comparison study on mechanical properties , 2020 .

[3]  Yang Fan,et al.  Bidirectional anisotropic polyimide/bacterial cellulose aerogels by freeze-drying for super-thermal insulation , 2020 .

[4]  Bernd Markert,et al.  Mechanical properties and behavior of glass fiber-reinforced silica aerogel nanocomposites: Insights from all-atom simulations , 2020 .

[5]  Gang Sun,et al.  Double-cross-linking strategy for preparing flexible, robust, and multifunctional polyimide aerogel , 2020 .

[6]  Sungjoo Lee,et al.  Large-Area MXene Electrode Array for Flexible Electronics. , 2019, ACS nano.

[7]  X. Xi,et al.  Nanofibrous Aerogel Bulk Assembled by Crosslinked SiC/SiOx Core-Shell Nanofibers with Multifunctionality and Temperature-Invariant Hyperelasticity. , 2019, ACS nano.

[8]  Yu-Zhong Wang,et al.  Hierarchically porous SiO2/polyurethane foam composites towards excellent thermal insulating, flame-retardant and smoke-suppressant performances. , 2019, Journal of hazardous materials.

[9]  Yong Ni,et al.  Biomimetic Carbon Tube Aerogel Enables Super-Elasticity and Thermal Insulation , 2019, Chem.

[10]  Lin Wang,et al.  Timesaving, High-Efficiency Approaches To Fabricate Aramid Nanofibers. , 2019, ACS nano.

[11]  Jianbin Xu,et al.  Highly Compressive Boron Nitride Nanotube Aerogels Reinforced with Reduced Graphene Oxide. , 2019, ACS nano.

[12]  X. Sui,et al.  Construction of functional cellulose aerogels via atmospheric drying chemically cross-linked and solvent exchanged cellulose nanofibrils , 2019, Chemical Engineering Journal.

[13]  Xungai Wang,et al.  Lightweight, Superelastic Yet Thermoconductive Boron Nitride Nanocomposite Aerogel for Thermal Energy Regulation. , 2019, ACS nano.

[14]  Shuhong Yu,et al.  Superelastic Hard Carbon Nanofiber Aerogels , 2019, Advanced materials.

[15]  Wenbin Gong,et al.  Boron Nitride Aerogels with Super‐Flexibility Ranging from Liquid Nitrogen Temperature to 1000 °C , 2019, Advanced Functional Materials.

[16]  Meifang Zhu,et al.  “Stiff–Soft” Binary Synergistic Aerogels with Superflexibility and High Thermal Insulation Performance , 2019, Advanced Functional Materials.

[17]  B. Ding,et al.  Highly Carboxylated, Cellular Structured, and Underwater Superelastic Nanofibrous Aerogels for Efficient Protein Separation , 2019, Advanced Functional Materials.

[18]  J. Lyu,et al.  Nanofibrous Kevlar Aerogel Films and Their Phase-Change Composites for Highly Efficient Infrared Stealth. , 2019, ACS nano.

[19]  Siqun Wang,et al.  Elasticity-Enhanced and Aligned Structure Nanocellulose Foam-like Aerogel Assembled with Cooperation of Chemical Art and Gradient Freezing , 2018, ACS Sustainable Chemistry & Engineering.

[20]  Xudong Cheng,et al.  Mechanical performance and thermal stability of polyvinyl alcohol–cellulose aerogels by freeze drying , 2018, Cellulose.

[21]  Xinwen Peng,et al.  A mechanically strong and sensitive CNT/rGO–CNF carbon aerogel for piezoresistive sensors , 2018 .

[22]  L. Qu,et al.  Reconstruction of Inherent Graphene Oxide Liquid Crystals for Large-Scale Fabrication of Structure-Intact Graphene Aerogel Bulk toward Practical Applications. , 2018, ACS nano.

[23]  Zhanhu Guo,et al.  Ultralight, highly compressible and fire-retardant graphene aerogel with self-adjustable electromagnetic wave absorption , 2018, Carbon.

[24]  Yan Yu,et al.  Highly Compressible and Hydrophobic Anisotropic Aerogels for Selective Oil/Organic Solvent Absorption , 2018, ACS Sustainable Chemistry & Engineering.

[25]  Rui Li,et al.  Fire-resistant, ultralight, superelastic and thermally insulated polybenzazole aerogels , 2018 .

[26]  Hao‐Bin Zhang,et al.  Multifunctional, Superelastic, and Lightweight MXene/Polyimide Aerogels. , 2018, Small.

[27]  M. Itskov,et al.  Fracture of silica aerogels: An all-atom simulation study , 2018, Journal of Non-Crystalline Solids.

[28]  Jun Shen,et al.  Multifunctional Silica Nanotube Aerogels Inspired by Polar Bear Hair for Light Management and Thermal Insulation , 2018, Chemistry of Materials.

[29]  Haiquan Guo,et al.  Triboelectric Nanogenerators Made of Porous Polyamide Nanofiber Mats and Polyimide Aerogel Film: Output Optimization and Performance in Circuits. , 2018, ACS applied materials & interfaces.

[30]  Yang Liu,et al.  Ester Crosslinking Enhanced Hydrophilic Cellulose Nanofibrils Aerogel , 2018, ACS Sustainable Chemistry & Engineering.

[31]  Shu-Hong Yu,et al.  Bioinspired polymeric woods , 2018, Science Advances.

[32]  M. Österberg,et al.  Eco-friendly Flame-Retardant Cellulose Nanofibril Aerogels by Incorporating Sodium Bicarbonate , 2018, ACS applied materials & interfaces.

[33]  I. Oh,et al.  Directionally Antagonistic Graphene Oxide-Polyurethane Hybrid Aerogel as a Sound Absorber. , 2018, ACS applied materials & interfaces.

[34]  Hao Zhuo,et al.  A Supercompressible, Elastic, and Bendable Carbon Aerogel with Ultrasensitive Detection Limits for Compression Strain, Pressure, and Bending Angle , 2018, Advanced materials.

[35]  L. Bergström,et al.  Fire-Retardant and Thermally Insulating Phenolic-Silica Aerogels. , 2018, Angewandte Chemie.

[36]  Lei Song,et al.  Multi-functional hydroxyapatite/polyvinyl alcohol composite aerogels with self-cleaning, superior fire resistance and low thermal conductivity , 2018 .

[37]  B. Ding,et al.  Ultralight and fire-resistant ceramic nanofibrous aerogels with temperature-invariant superelasticity , 2018, Science Advances.

[38]  Jian Xu,et al.  Superelastic and ultralight polyimide aerogels as thermal insulators and particulate air filters , 2018 .

[39]  N. Kotov,et al.  Branched Aramid Nanofibers. , 2017, Angewandte Chemie.

[40]  S. Agarwal,et al.  Ultralight, Thermally Insulating, Compressible Polyimide Fiber Assembled Sponges. , 2017, ACS applied materials & interfaces.

[41]  J. Wan,et al.  Cellulose Aerogel Membranes with a Tunable Nanoporous Network as a Matrix of Gel Polymer Electrolytes for Safer Lithium-Ion Batteries. , 2017, ACS applied materials & interfaces.

[42]  K. Nakanishi,et al.  Highly Flexible Hybrid Polymer Aerogels and Xerogels Based on Resorcinol-Formaldehyde with Enhanced Elastic Stiffness and Recoverability: Insights into the Origin of Their Mechanical Properties , 2017 .

[43]  Jungwoo Oh,et al.  Highly Elastic and Conductive N‐Doped Monolithic Graphene Aerogels for Multifunctional Applications , 2015 .

[44]  Ying Li,et al.  Lightweight, Superelastic, and Mechanically Flexible Graphene/Polyimide Nanocomposite Foam for Strain Sensor Application. , 2015, ACS nano.

[45]  Akira Isogai,et al.  Aerogels with 3D ordered nanofiber skeletons of liquid-crystalline nanocellulose derivatives as tough and transparent insulators. , 2014, Angewandte Chemie.

[46]  Xiaodong He,et al.  Elastic improvement of carbon nanotube sponges by depositing amorphous carbon coating , 2014 .

[47]  Chao Gao,et al.  Multifunctional, Ultra‐Flyweight, Synergistically Assembled Carbon Aerogels , 2013, Advanced materials.

[48]  C. Li,et al.  Ultralight, flexible, and fire-resistant carbon nanofiber aerogels from bacterial cellulose. , 2013, Angewandte Chemie.

[49]  M. Zhan,et al.  Preparation and Performance of Polyimide-Reinforced Clay Aerogel Composites , 2012 .

[50]  Patrick Achard,et al.  Aerogel-based thermal superinsulation: an overview , 2012, Journal of Sol-Gel Science and Technology.

[51]  L. Valdevit,et al.  Ultralight Metallic Microlattices , 2011, Science.

[52]  A. Waas,et al.  Dispersions of aramid nanofibers: a new nanoscale building block. , 2011, ACS nano.

[53]  Jiao Guo,et al.  Polyimide aerogels cross-linked through amine functionalized polyoligomeric silsesquioxane. , 2011, ACS applied materials & interfaces.

[54]  Hongwei Zhu,et al.  Carbon Nanotube Sponges , 2010, Advanced materials.

[55]  Changdong Sheng,et al.  Char structure characterised by Raman spectroscopy and its correlations with combustion reactivity , 2007 .

[56]  Wei Zhang,et al.  Progress in Drying Technology for Nanomaterials , 2005 .

[57]  U. Schubert,et al.  Aerogels-Airy Materials: Chemistry, Structure, and Properties. , 1998, Angewandte Chemie.

[58]  R. Pekala,et al.  Thermal Conductivity of Monolithic Organic Aerogels , 1992, Science.

[59]  J. E. Katon,et al.  Infrared and Raman Group Frequencies of Cyclic Imides , 1990 .

[60]  M. Takayanagi,et al.  N‐substituted poly(p‐phenylene terephthalamide) , 1981 .

[61]  S. S. Kistler,et al.  Coherent Expanded-Aerogels , 1932 .