Surface Reactivity Control of a Borosilicate Glass Using Thermal Poling

The ability to control glass surface reactivity at different length enables key properties required for future “smart substrates”. Employing a thermal poling process on a specific borosilicate glass composition can yield a surface with tailored physical and chemical properties. This work shows that during poling, alkali contained in the glass matrix migrates from the anode to the cathode side of the specimen, yielding the formation of an alkali-depleted layer under the anode. We have shown that this process is responsible for structural changes in the glass network and the formation of a frozen electric field within the glass. Network reorganization is linked to the creation of BO3 units, which replace BO4– entities upon migration of the alkali ions. The resulting newly charged borate structure leads to a measurable change in the glass’ affinity to atmospheric water, being attracted to the poled anodic zone. Such spatial control of surface hydrophilicity can aid in the creation of tailored surface functio...

[1]  K. Yamashita,et al.  Electrical polarization of bioactive glass and assessment of their in vitro apatite deposition. , 2003, Journal of biomedical materials research. Part A.

[2]  E. Palleau,et al.  Coulomb force directed single and binary assembly of nanoparticles from aqueous dispersions by AFM nanoxerography. , 2011, ACS nano.

[3]  Steven R. J. Brueck,et al.  Dynamics of second-harmonic generation in fused silica , 1994 .

[4]  Mechanism and Kinetics of Na+ Ion Depletion under the Anode during Electro-thermal Poling of a Bioactive Glass , 2008, 0810.0429.

[5]  M. Dussauze,et al.  Polarization mechanisms and structural rearrangements in thermally poled sodium-alumino phosphate glasses , 2010 .

[6]  R. A. Myers,et al.  Large second-order nonlinearity in poled fused silica. , 1991, Optics letters.

[7]  K. Krishnan The Raman spectrum of boric acid , 1963 .

[8]  Thomas G. Alley,et al.  Secondary ion mass spectrometry study of space-charge formation in thermally poled fused silica , 1999 .

[9]  K. Yamashita,et al.  Electrostatic surface charge acceleration of bone ingrowth of porous hydroxyapatite/beta-tricalcium phosphate ceramics. , 2010, Journal of biomedical materials research. Part A.

[10]  William B. White,et al.  Raman spectroscopic investigation of the structure of silicate glasses. III. Raman intensities and structural units in sodium silicate glasses , 1981 .

[11]  W. Lanford,et al.  Field assisted transport of Na+ ions, Ca2+ ions and electrons in commercial soda-lime glass I: Experimental , 1988 .

[12]  W. Konijnendijk The structure of borosilicate glasses , 1975 .

[13]  D. Carlson Anodic Proton Injection in Glasses , 1974 .

[14]  A. Boccaccini,et al.  Bioactivity of electro-thermally poled bioactive silicate glass. , 2009, Acta biomaterialia.

[15]  Thierry Cardinal,et al.  Thermal Poling of Optical Glasses: Mechanisms and Second-Order Optical Properties , 2012 .

[16]  K. Richardson,et al.  How Does Thermal Poling Affect the Structure of Soda-Lime Glass? , 2010 .

[17]  N. Sheppard,et al.  The infra-red spectrum and structure of boric acid , 1955 .

[18]  Larry L. Hench,et al.  Bonding mechanisms at the interface of ceramic prosthetic materials , 1971 .

[19]  Peter G. Kazansky,et al.  Thermally poled glass: frozen-in electric field or oriented dipoles? , 1994 .

[20]  R. Brow,et al.  Introduction to Glass Science and Technology , 1999 .

[21]  A. Tenney,et al.  Last minute addition)VIBRATIONAL SPECTRA OF VAPOR DEPOSITED BINARY BOROSILICATE GLASSES , 1972 .

[22]  Gero Decher,et al.  Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites , 1997 .

[23]  D. Talaga,et al.  Trapped Molecular and Ionic Species in Poled Borosilicate Glasses: Toward a Rationalized Description of Thermal Poling in Glasses , 2014 .

[24]  Steffen Böhlkea,et al.  About the volatility of boron in aqueous solutions of borates with vapour in relevance to BWR-Reactors , 2008 .

[25]  G. E. Peterson,et al.  Structure and phonon spectra of SiO2, B2O3 and mixed SiO2B2O3 glasses , 1980 .

[26]  G. Chryssikos,et al.  Infrared reflectance spectra of lithium borate glasses , 1990 .

[27]  Evelyne Fargin,et al.  Enhanced Raman scattering in thermally poled sodium-niobium borophosphate glasses , 2007 .

[28]  M. Dussauze,et al.  Correlation between second-order optical response and structure in thermally poled sodium niobium-germanate glass , 2010 .

[29]  D. Carlson,et al.  Ion Depletion of Glass at a Blocking Anode: II, Properties of Ion‐Depleted Glasses , 1974 .

[30]  D. Ehrt,et al.  Electrical conductivity and viscosity of borosilicate glasses and melts , 2009 .

[31]  A. Lipovskii,et al.  Bleaching versus poling: Comparison of electric field induced phenomena in glasses and glass-metal nanocomposites , 2011 .

[32]  V. Araújo,et al.  Compositional and structural changes at the anodic surface of thermally poled soda-lime float glass , 2008 .

[33]  D. Ehrt,et al.  Thermal history of a low alkali borosilicate glass probed by infrared and Raman spectroscopy , 2006 .

[34]  N. J. Smith,et al.  Structural and compositional modification of a barium boroaluminosilicate glass surface by thermal poling , 2014 .

[35]  P. Hagenmuller,et al.  Etudes par spectroscopie Raman et par RMN des verres du système B2O3SiO2Li2O , 1981 .

[36]  P. Zapol,et al.  First‐Principles Study of Hydrolysis Reaction Barriers in a Sodium Borosilicate Glass , 2013 .

[37]  E. Kamitsos,et al.  Infrared-reflectance spectra of heat-treated sol-gel-derived silica. , 1993, Physical review. B, Condensed matter.

[38]  K. Yamashita,et al.  Acceleration and Deceleration of Bone-Like Crystal Growth on Ceramic Hydroxyapatite by Electric Poling , 1996 .

[39]  Evelyne Fargin,et al.  Structural Rearrangements and Second-Order Optical Response in the Space Charge Layer of Thermally Poled Sodium−Niobium Borophosphate Glasses , 2007 .

[40]  M. Dussauze,et al.  Correlation of large SHG responses with structural characterization in borophosphate niobium glasses , 2006 .

[41]  G. Chryssikos,et al.  New insights into the structure of alkali borate glasses , 1990 .

[42]  R. Thomas Determination of the H3BO3 concentration in fluid and melt inclusions in granite pegmatites by laser Raman microprobe spectroscopy , 2002 .

[43]  D. E. Carlson,et al.  Electrode “Polarization” in Alkali‐Containing Glasses , 1972 .