Subaru/SCExAO First-light Direct Imaging of a Young Debris Disk around HD 36546

We present H-band scattered light imaging of a bright debris disk around the A0 star HD 36546 obtained from the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) system with data recorded by the HiCIAO camera using the vector vortex coronagraph. SCExAO traces the disk from r ~ 0.”3 to r ~ 1'' (34–114 au). The disk is oriented in a near east–west direction (PA ~ 75°), is inclined by i ~ 70°–75°, and is strongly forward-scattering (g > 0.5). It is an extended disk rather than a sharp ring; a second, diffuse dust population extends from the disk's eastern side. While HD 36546 intrinsic properties are consistent with a wide age range (t ~ 1–250 Myr), its kinematics and analysis of coeval stars suggest a young age (3–10 Myr) and a possible connection to Taurus-Auriga's star formation history. SCExAO's planet-to-star contrast ratios are comparable to the first-light Gemini Planet Imager contrasts; for an age of 10 Myr, we rule out planets with masses comparable to HR 8799 b beyond a projected separation of 23 au. A massive icy planetesimal disk or an unseen super-Jovian planet at r > 20 au may explain the disk's visibility. The HD 36546 debris disk may be the youngest debris disk yet imaged, is the first newly identified object from the now-operational SCExAO extreme AO system, is ideally suited for spectroscopic follow-up with SCExAO/CHARIS in 2017, and may be a key probe of icy planet formation and planet–disk interactions.

[1]  M. Wyatt,et al.  Evolution of Debris Disks , 2008 .

[2]  S. Kenyon,et al.  Variations on Debris Disks: Icy Planet Formation at 30-150 AU for 1-3 M☉ Main-Sequence Stars , 2008, 0807.1134.

[3]  A. Boccaletti,et al.  The position of β Pictoris b position relative to the debris disk , 2012, 1202.2578.

[4]  Craig Loomis,et al.  Laboratory testing and performance verification of the CHARIS integral field spectrograph , 2016, Astronomical Telescopes + Instrumentation.

[5]  H. Zinnecker,et al.  A spectroscopic survey on the multiplicity of high-mass stars , 2012, 1205.5238.

[6]  Laurent Loinard,et al.  VLBA Determination of the Distance to Nearby Star-forming Regions. II. Hubble 4 and HDE 283572 in Taurus , 2007, 0708.4403.

[7]  A. Boccaletti,et al.  A Giant Planet Imaged in the Disk of the Young Star β Pictoris , 2010, Science.

[8]  P. Berlind,et al.  Spectral Analysis and Classification of Herbig Ae/Be Stars , 2004 .

[9]  E. Mamajek,et al.  INTRINSIC COLORS, TEMPERATURES, AND BOLOMETRIC CORRECTIONS OF PRE-MAIN-SEQUENCE STARS , 2013, 1307.2657.

[10]  K. Cruz,et al.  AN INFRARED/X-RAY SURVEY FOR NEW MEMBERS OF THE TAURUS STAR-FORMING REGION , 2009, 0911.5451.

[11]  A. J. Weinberger,et al.  STIS IMAGING OF THE HR 4796A CIRCUMSTELLAR DEBRIS RING , 2008, 0810.0286.

[12]  C. A. Grady,et al.  THE MOVING GROUP TARGETS OF THE SEEDS HIGH-CONTRAST IMAGING SURVEY OF EXOPLANETS AND DISKS: RESULTS AND OBSERVATIONS FROM THE FIRST THREE YEARS , 2013, 1305.7264.

[13]  S. Gross,et al.  The SCExAO high contrast imager: transitioning from commissioning to science , 2016, Astronomical Telescopes + Instrumentation.

[14]  E. Nesvold,et al.  GAP CLEARING BY PLANETS IN A COLLISIONAL DEBRIS DISK , 2014, 1410.7784.

[15]  C. Marois,et al.  A NEW ALGORITHM FOR POINT SPREAD FUNCTION SUBTRACTION IN HIGH-CONTRAST IMAGING: A DEMONSTRATION WITH ANGULAR DIFFERENTIAL IMAGING , 2007 .

[16]  Tae-Soo Pyo,et al.  A COMBINED SUBARU/VLT/MMT 1–5 μm STUDY OF PLANETS ORBITING HR 8799: IMPLICATIONS FOR ATMOSPHERIC PROPERTIES, MASSES, AND FORMATION , 2011, 1101.1973.

[17]  Timothy D. Brandt,et al.  DIRECT IMAGING DISCOVERY OF A “SUPER-JUPITER” AROUND THE LATE B-TYPE STAR κ And , 2012, 1211.3744.

[18]  G. Rieke,et al.  A DEEP SPITZER SURVEY OF CIRCUMSTELLAR DISKS IN THE YOUNG DOUBLE CLUSTER, h AND χ PERSEI , 2014, 1408.1724.

[19]  L. Hillenbrand,et al.  A Distributed Population of Low-Mass Pre-Main-Sequence Stars near the Taurus Molecular Clouds , 2006, astro-ph/0609048.

[20]  John H. Debes,et al.  DIRECT IMAGING AND SPECTROSCOPY OF A YOUNG EXTRASOLAR KUIPER BELT IN THE NEAREST OB ASSOCIATION , 2015, 1505.06734.

[21]  G. Perrin,et al.  The Subaru Coronagraphic Extreme Adaptive Optics System: Enabling High-Contrast Imaging on Solar-System Scales , 2015, 1507.00017.

[22]  Bradford A. Smith,et al.  A Circumstellar Disk Around β Pictoris , 1984, Science.

[23]  Mamadou N'Diaye,et al.  FIRST IMAGES OF DEBRIS DISKS AROUND TWA 7, TWA 25, HD 35650, AND HD 377 , 2015, 1512.02220.

[24]  F. V. Leeuwen Validation of the new Hipparcos reduction , 2007, 0708.1752.

[25]  Jean-Pierre Véran,et al.  Exoplanet imaging with LOCI processing: photometry and astrometry with the new SOSIE pipeline , 2010, Astronomical Telescopes + Instrumentation.

[26]  K. Stassun,et al.  THE MATRYOSHKA DISK: KECK/NIRC2 DISCOVERY OF A SOLAR-SYSTEM-SCALE, RADIALLY SEGREGATED RESIDUAL PROTOPLANETARY DISK AROUND HD 141569A , 2016, 1602.01219.

[27]  J. Li,et al.  Newly discovered candidate weak-line T Tauri stars in the surrounding area of the Taurus-Auriga region , 1998 .

[28]  Andrew W. Serio,et al.  First light of the Gemini Planet Imager , 2014, Proceedings of the National Academy of Sciences.

[29]  Tong-Jie Zhang,et al.  BRIGHT 22 μm EXCESS CANDIDATES FROM THE WISE ALL-SKY CATALOG AND THE HIPPARCOS MAIN CATALOG , 2013, 1308.3848.

[30]  Julien Lozi,et al.  SCExAO AND GPI Y JH BAND PHOTOMETRY AND INTEGRAL FIELD SPECTROSCOPY OF THE YOUNG BROWN DWARF COMPANION TO HD 1160 , 2016, 1610.05786.

[31]  Astronomy,et al.  The Rise and Fall of Debris Disks: MIPS Observations of h and χ Persei and the Evolution of Mid-IR Emission from Planet Formation , 2007, 0709.2510.

[32]  M. Skrutskie,et al.  DOES THE DEBRIS DISK AROUND HD 32297 CONTAIN COMETARY GRAINS?, , 2014, 1401.3343.

[33]  Cambridge,et al.  Debris disc stirring by secular perturbations from giant planets , 2009, 0907.1389.

[34]  Timothy D. Brandt,et al.  BAYESIAN AGES FOR EARLY-TYPE STARS FROM ISOCHRONES INCLUDING ROTATION, AND A POSSIBLE OLD AGE FOR THE HYADES , 2015, 1501.04404.

[35]  Adam Burrows,et al.  DIRECT IMAGING CONFIRMATION AND CHARACTERIZATION OF A DUST-ENSHROUDED CANDIDATE EXOPLANET ORBITING FOMALHAUT , 2012, 1210.6620.

[36]  Bertrand Mennesson,et al.  FUNDAMENTAL LIMITATIONS OF HIGH CONTRAST IMAGING SET BY SMALL SAMPLE STATISTICS , 2014, 1407.2247.

[37]  M. Bessell,et al.  Re-examining the membership and origin of the € Cha association , 2013, 1305.4177.

[38]  B. Macintosh,et al.  Direct Imaging of Multiple Planets Orbiting the Star HR 8799 , 2008, Science.

[39]  Serge Correia,et al.  DIRECT IMAGING AND SPECTROSCOPY OF A CANDIDATE COMPANION BELOW/NEAR THE DEUTERIUM-BURNING LIMIT IN THE YOUNG BINARY STAR SYSTEM, ROXs 42B , 2013, 1310.4825.

[40]  Philip M. Hinz,et al.  PREDICTIONS FOR SHEPHERDING PLANETS IN SCATTERED LIGHT IMAGES OF DEBRIS DISKS , 2013, 1311.1207.

[41]  Catherine Slesnick,et al.  A Large-Area Search for Low-Mass Objects in Upper Scorpius. I. The Photometric Campaign and New Brown Dwarfs , 2006 .

[42]  Jeremy Jones,et al.  THE AGE OF THE DIRECTLY IMAGED PLANET HOST STAR κ ANDROMEDAE DETERMINED FROM INTERFEROMETRIC OBSERVATIONS , 2016, 1604.02176.

[43]  B. Macintosh,et al.  Angular Differential Imaging: A Powerful High-Contrast Imaging Technique , 2005, astro-ph/0512335.

[44]  Mark J. Pecaut,et al.  A REVISED AGE FOR UPPER SCORPIUS AND THE STAR FORMATION HISTORY AMONG THE F-TYPE MEMBERS OF THE SCORPIUS–CENTAURUS OB ASSOCIATION , 2011, 1112.1695.

[45]  Subaru Telescope,et al.  IMAGING DISCOVERY OF THE DEBRIS DISK AROUND HIP 79977 , 2013, 1301.0625.

[46]  P. H. Hauschildt,et al.  Evolutionary models for cool brown dwarfs and extrasolar giant planets. The case of HD 209458 , 2003 .