Engineering Dresselhaus spin-orbit coupling for cold atoms in a double tripod configuration
暂无分享,去创建一个
G. Juzeliunas | J. Ruseckas | D. L. Campbell | I. B. Spielman | J. Ruseckas | G. Juzeliūnas | D. Campbell | I. Spielman
[1] B. Shore,et al. Robust creation and phase-sensitive probing of superposition states via stimulated Raman adiabatic passage (STIRAP) with degenerate dark states , 1998 .
[2] Geometric Phases in Quantum Systems , .
[3] J. Schliemann,et al. Nonballistic spin-field-effect transistor. , 2002, Physical review letters.
[4] M. Merkl,et al. Atomic Zitterbewegung , 2008, 0803.4189.
[5] L. Santos,et al. Chiral confinement in quasirelativistic Bose-Einstein condensates. , 2009, Physical review letters.
[6] J. Ruseckas,et al. Double and negative reflection of cold atoms in non-Abelian gauge potentials. , 2008, Physical review letters.
[7] J. Dalibard,et al. Generalized Rashba-Dresselhaus spin-orbit coupling for cold atoms , 2010, 1002.0578.
[8] L. Santos,et al. Quasirelativistic behavior of cold atoms in light fields , 2007, 0712.1677.
[9] R. M. Westervelt,et al. Zitterbewegung of electrons and holes in III-V semiconductor quantum wells , 2006 .
[10] C. Mead,et al. On the determination of Born–Oppenheimer nuclear motion wave functions including complications due to conical intersections and identical nuclei , 1979 .
[11] Klaas Bergmann,et al. LASER-DRIVEN POPULATION TRANSFER IN FOUR-LEVEL ATOMS : CONSEQUENCES OF NON-ABELIAN GEOMETRICAL ADIABATIC PHASE FACTORS , 1999 .
[12] I. B. Spielman,et al. Spin–orbit-coupled Bose–Einstein condensates , 2011, Nature.
[13] G. Dresselhaus. Spin-Orbit Coupling Effects in Zinc Blende Structures , 1955 .
[14] J Ruseckas,et al. Non-Abelian gauge potentials for ultracold atoms with degenerate dark states. , 2005, Physical review letters.
[15] J. Gong,et al. Control of tripod-scheme cold-atom wavepackets by manipulating a non-Abelian vector potential , 2009, 0906.1625.
[16] C. Clark,et al. Observing Zitterbewegung with ultracold atoms. , 2007, Physical review letters.
[17] M. Berry. Quantal phase factors accompanying adiabatic changes , 1984, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[18] I. Spielman. Raman processes and effective gauge potentials , 2009, 0905.2436.
[19] R. Winkler. Spin-orbit Coupling Effects in Two-Dimensional Electron and Hole Systems , 2003 .
[20] L. Santos,et al. Cold atom dynamics in non-Abelian gauge fields , 2007, 0801.2928.
[21] E. Sjoqvist,et al. Jahn-Teller-induced Berry phase in spin-orbit-coupled Bose-Einstein condensates , 2008, 0812.1725.
[22] J. Dalibard,et al. Geometric potentials in quantum optics: A semi-classical interpretation , 2008, 0807.4066.
[23] Hui Zhai,et al. Spin-orbit coupled spinor Bose-Einstein condensates. , 2010, Physical review letters.
[24] V. Galitski,et al. Nonequilibrium spin dynamics in a trapped fermi gas with effective spin-orbit interactions. , 2007, Physical Review Letters.
[25] J. Ruseckas,et al. Light-induced effective magnetic fields for ultracold atoms in planar geometries , 2005, quant-ph/0511226.
[26] Frank Wilczek,et al. Appearance of Gauge Structure in Simple Dynamical Systems , 1984 .
[27] S. Sarma,et al. Spintronics: Fundamentals and applications , 2004, cond-mat/0405528.
[28] M. Lewenstein,et al. Realistic time-reversal invariant topological insulators with neutral atoms. , 2010, Physical review letters.