Engineering Dresselhaus spin-orbit coupling for cold atoms in a double tripod configuration

We study laser induced spin-orbit (SO) coupling in cold atom systems where lasers couple three internal states to a pair of excited states, in a double tripod topology. Proper choice of laser amplitudes and phases produces a Hamiltonian with a doubly degenerate ground state separated from the remaining "excited" eigenstates by gaps determined by the Rabi frequencies of the atom-light coupling. After eliminating the excited states with a Born- Oppenheimer approximation, the Hamiltonian of the remaining two states includes Dresselhaus (or equivalently Rashba) SO coupling. Unlike earlier proposals, here the SO coupled states are the two lowest energy "dressed" spin states and are thus immune to collisional relaxation. Finally, we discuss a specific implementation of our system using Raman transitions between different hyperfine states within the electronic ground state manifold of nuclear spin I = 3/2 alkali atoms.

[1]  B. Shore,et al.  Robust creation and phase-sensitive probing of superposition states via stimulated Raman adiabatic passage (STIRAP) with degenerate dark states , 1998 .

[2]  Geometric Phases in Quantum Systems , .

[3]  J. Schliemann,et al.  Nonballistic spin-field-effect transistor. , 2002, Physical review letters.

[4]  M. Merkl,et al.  Atomic Zitterbewegung , 2008, 0803.4189.

[5]  L. Santos,et al.  Chiral confinement in quasirelativistic Bose-Einstein condensates. , 2009, Physical review letters.

[6]  J. Ruseckas,et al.  Double and negative reflection of cold atoms in non-Abelian gauge potentials. , 2008, Physical review letters.

[7]  J. Dalibard,et al.  Generalized Rashba-Dresselhaus spin-orbit coupling for cold atoms , 2010, 1002.0578.

[8]  L. Santos,et al.  Quasirelativistic behavior of cold atoms in light fields , 2007, 0712.1677.

[9]  R. M. Westervelt,et al.  Zitterbewegung of electrons and holes in III-V semiconductor quantum wells , 2006 .

[10]  C. Mead,et al.  On the determination of Born–Oppenheimer nuclear motion wave functions including complications due to conical intersections and identical nuclei , 1979 .

[11]  Klaas Bergmann,et al.  LASER-DRIVEN POPULATION TRANSFER IN FOUR-LEVEL ATOMS : CONSEQUENCES OF NON-ABELIAN GEOMETRICAL ADIABATIC PHASE FACTORS , 1999 .

[12]  I. B. Spielman,et al.  Spin–orbit-coupled Bose–Einstein condensates , 2011, Nature.

[13]  G. Dresselhaus Spin-Orbit Coupling Effects in Zinc Blende Structures , 1955 .

[14]  J Ruseckas,et al.  Non-Abelian gauge potentials for ultracold atoms with degenerate dark states. , 2005, Physical review letters.

[15]  J. Gong,et al.  Control of tripod-scheme cold-atom wavepackets by manipulating a non-Abelian vector potential , 2009, 0906.1625.

[16]  C. Clark,et al.  Observing Zitterbewegung with ultracold atoms. , 2007, Physical review letters.

[17]  M. Berry Quantal phase factors accompanying adiabatic changes , 1984, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[18]  I. Spielman Raman processes and effective gauge potentials , 2009, 0905.2436.

[19]  R. Winkler Spin-orbit Coupling Effects in Two-Dimensional Electron and Hole Systems , 2003 .

[20]  L. Santos,et al.  Cold atom dynamics in non-Abelian gauge fields , 2007, 0801.2928.

[21]  E. Sjoqvist,et al.  Jahn-Teller-induced Berry phase in spin-orbit-coupled Bose-Einstein condensates , 2008, 0812.1725.

[22]  J. Dalibard,et al.  Geometric potentials in quantum optics: A semi-classical interpretation , 2008, 0807.4066.

[23]  Hui Zhai,et al.  Spin-orbit coupled spinor Bose-Einstein condensates. , 2010, Physical review letters.

[24]  V. Galitski,et al.  Nonequilibrium spin dynamics in a trapped fermi gas with effective spin-orbit interactions. , 2007, Physical Review Letters.

[25]  J. Ruseckas,et al.  Light-induced effective magnetic fields for ultracold atoms in planar geometries , 2005, quant-ph/0511226.

[26]  Frank Wilczek,et al.  Appearance of Gauge Structure in Simple Dynamical Systems , 1984 .

[27]  S. Sarma,et al.  Spintronics: Fundamentals and applications , 2004, cond-mat/0405528.

[28]  M. Lewenstein,et al.  Realistic time-reversal invariant topological insulators with neutral atoms. , 2010, Physical review letters.