Fusing uncertain knowledge and evidence for maritime situational awareness via Markov Logic Networks

The concepts of event and anomaly are important building blocks for developing a situational picture of the observed environment. We here relate these concepts to the JDL fusion model and demonstrate the power of Markov Logic Networks (MLNs) for encoding uncertain knowledge and compute inferences according to observed evidence. MLNs combine the expressive power of first-order logic and the probabilistic uncertainty management of Markov networks. Within this framework, different types of knowledge (e.g. a priori, contextual) with associated uncertainty can be fused together for situation assessment by expressing unobservable complex events as a logical combination of simpler evidences. We also develop a mechanism to evaluate the level of completion of complex events and show how, along with event probability, it could provide additional useful information to the operator. Examples are demonstrated on two maritime scenarios of rules for event and anomaly detection.

[1]  P. Pongpaibool,et al.  Detection of hazardous driving behavior using fuzzy logic , 2008, 2008 5th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology.

[2]  Mark R. Morelande,et al.  Statistical analysis of motion patterns in AIS Data: Anomaly detection and motion prediction , 2008, 2008 11th International Conference on Information Fusion.

[3]  Gian Luca Foresti,et al.  Domain knowledge for surveillance applications , 2007, 2007 10th International Conference on Information Fusion.

[4]  Paulo Cesar G. da Costa,et al.  PR-OWL 2 Case Study: A Maritime Domain Probabilistic Ontology , 2011, STIDS.

[5]  Jean-François Balmat,et al.  A decision-making system to maritime risk assessment , 2011 .

[6]  Umberto Straccia,et al.  Managing uncertainty and vagueness in description logics for the Semantic Web , 2008, J. Web Semant..

[7]  Lauro Snidaro,et al.  Integration of contextual information for tracking refinement , 2011, 14th International Conference on Information Fusion.

[8]  Gian Luca Foresti,et al.  Fusion of trajectory clusters for situation assessment , 2006, 2006 9th International Conference on Information Fusion.

[9]  Alex Goodall,et al.  The guide to expert systems , 1985 .

[10]  Véronique Malaisé,et al.  Semi-Automatic Ontology Extension in the Maritime Domain , 2008 .

[11]  Jung-Min Park,et al.  An overview of anomaly detection techniques: Existing solutions and latest technological trends , 2007, Comput. Networks.

[12]  James Llinas,et al.  A framework for dynamic hard/soft fusion , 2008, 2008 11th International Conference on Information Fusion.

[13]  Naim Dahnoun,et al.  Studies in Computational Intelligence , 2013 .

[14]  Gian Luca Foresti,et al.  Markov Logic Networks for context integration and situation assessment in maritime domain , 2012, 2012 15th International Conference on Information Fusion.

[15]  Larry S. Davis,et al.  Event Modeling and Recognition Using Markov Logic Networks , 2008, ECCV.

[16]  Miguel A. Patricio,et al.  On the representation and exploitation of context knowledge in a harbor surveillance scenario , 2011, 14th International Conference on Information Fusion.

[17]  Xiaokun Li,et al.  A hidden Markov model framework for traffic event detection using video features , 2004, 2004 International Conference on Image Processing, 2004. ICIP '04..

[18]  Stefano Coraluppi,et al.  Multisensor tracking and fusion for maritime surveillance , 2007, 2007 10th International Conference on Information Fusion.

[19]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[20]  Paulo Cesar G. da Costa,et al.  Modeling a probabilistic ontology for Maritime Domain Awareness , 2011, 14th International Conference on Information Fusion.

[21]  Vincent Nimier,et al.  Supervised multisensor tracking algorithm , 1998, 9th European Signal Processing Conference (EUSIPCO 1998).

[22]  Paulo Cesar G. da Costa,et al.  Evaluating uncertainty representation and reasoning in HLF systems , 2011, 14th International Conference on Information Fusion.

[23]  James F. Allen Maintaining knowledge about temporal intervals , 1983, CACM.

[24]  Véronique Malaisé,et al.  Design and use of the Simple Event Model (SEM) , 2011, J. Web Semant..

[25]  Florentin Smarandache,et al.  Advances and Applications of DSmT for Information Fusion (Collected Works) , 2004 .

[26]  Robert Orchard,et al.  Fuzzy Reasoning in JESS: The Fuzzyj Toolkit and Fuzzyjess , 2001, ICEIS.

[27]  Richard O. Lane,et al.  Maritime anomaly detection and threat assessment , 2010, 2010 13th International Conference on Information Fusion.

[28]  Jean Roy,et al.  Rule-based expert system for maritime anomaly detection , 2010, Defense + Commercial Sensing.

[29]  Ben Taskar,et al.  Introduction to Statistical Relational Learning (Adaptive Computation and Machine Learning) , 2007 .

[30]  Gian Luca Foresti,et al.  Data Fusion in Modern Surveillance , 2011 .

[31]  Matthew Richardson,et al.  Markov logic networks , 2006, Machine Learning.

[32]  Tom Ziemke,et al.  Reasoning about anomalies: a study of the analytical process of detecting and identifying anomalous behavior in maritime traffic data , 2009, Defense + Commercial Sensing.

[33]  Lars Niklasson,et al.  Enhanced situational awareness in the maritime domain: an agent-based approach for situation management , 2009, Defense + Commercial Sensing.

[34]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[35]  F. Wolter,et al.  Handbook of philosophical logic. Vol. 3 , 2001 .

[36]  James Llinas,et al.  Terrain based Tracking Using Position Sensors , 2001 .

[37]  James Llinas,et al.  Revisiting the JDL Data Fusion Model II , 2004 .

[38]  Jean Roy,et al.  Anomaly detection in the maritime domain , 2008, SPIE Defense + Commercial Sensing.

[39]  Edward H. Shortliffe,et al.  A model of inexact reasoning in medicine , 1990 .

[40]  Jean Roy,et al.  Exploitation of maritime domain ontologies for anomaly detection and threat analysis , 2010, 2010 International WaterSide Security Conference.

[41]  Xia Zhang,et al.  A model of inexact reasoning in mechanical design evaluation , 1996, Artif. Intell. Eng..

[42]  Jean Dezert,et al.  Advances and Applications of DSmT for Information Fusion. Collected Works. Volume 4 , 2015 .

[43]  Éloi Bossé,et al.  Information quality in information fusion , 2010, 2010 13th International Conference on Information Fusion.