Robust enumeration of cell subsets from tissue expression profiles

We introduce CIBERSORT, a method for characterizing cell composition of complex tissues from their gene expression profiles. When applied to enumeration of hematopoietic subsets in RNA mixtures from fresh, frozen and fixed tissues, including solid tumors, CIBERSORT outperformed other methods with respect to noise, unknown mixture content and closely related cell types. CIBERSORT should enable large-scale analysis of RNA mixtures for cellular biomarkers and therapeutic targets (http://cibersort.stanford.edu/).

[1]  Bernhard Schölkopf,et al.  New Support Vector Algorithms , 2000, Neural Computation.

[2]  A. E. Hoerl,et al.  Ridge regression: biased estimation for nonorthogonal problems , 2000 .

[3]  Trevor Hastie,et al.  The Elements of Statistical Learning , 2001 .

[4]  Aleksey A. Nakorchevskiy,et al.  Expression deconvolution: A reinterpretation of DNA microarray data reveals dynamic changes in cell populations , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Isabelle Guyon,et al.  An Introduction to Variable and Feature Selection , 2003, J. Mach. Learn. Res..

[6]  John D. Storey,et al.  Statistical significance for genomewide studies , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[7]  Yunqian Ma,et al.  Practical selection of SVM parameters and noise estimation for SVM regression , 2004, Neural Networks.

[8]  Alexander R. Abbas,et al.  Immune response in silico (IRIS): immune-specific genes identified from a compendium of microarray expression data , 2005, Genes and Immunity.

[9]  G. Collins The next generation. , 2006, Scientific American.

[10]  H. Zou,et al.  The doubly regularized support vector machine , 2006 .

[11]  Chi-Ying F. Huang,et al.  Selection of DDX5 as a novel internal control for Q-RT-PCR from microarray data using a block bootstrap re-sampling scheme , 2007, BMC Genomics.

[12]  S. Wacholder,et al.  Gene Expression Signature of Cigarette Smoking and Its Role in Lung Adenocarcinoma Development and Survival , 2008, PloS one.

[13]  Z. Modrušan,et al.  Deconvolution of Blood Microarray Data Identifies Cellular Activation Patterns in Systemic Lupus Erythematosus , 2009, PloS one.

[14]  S. Teichmann,et al.  A HaemAtlas: characterizing gene expression in differentiated human blood cells , 2008, Blood.

[15]  Mark M. Davis,et al.  Cell type–specific gene expression differences in complex tissues , 2010, Nature Methods.

[16]  H. Parkinson,et al.  A global map of human gene expression , 2010, Nature Biotechnology.

[17]  Ramnik J. Xavier,et al.  Gene enrichment profiles reveal T-cell development, differentiation, and lineage-specific transcription factors including ZBTB25 as a novel NF-AT repressor. , 2010, Blood.

[18]  Jeffrey T. Lau,et al.  CD40 Pathway Activation Status Predicts Response to CD40 Therapy in Diffuse Large B Cell Lymphoma , 2011, Science Translational Medicine.

[19]  D. Hanahan,et al.  Hallmarks of Cancer: The Next Generation , 2011, Cell.

[20]  Donald Eugene. Farrar,et al.  Multicollinearity in Regression Analysis; the Problem Revisited , 2011 .

[21]  R. Faull,et al.  Population-specific expression analysis (PSEA) reveals molecular changes in diseased brain , 2011, Nature Methods.

[22]  J. Szustakowski,et al.  Optimal Deconvolution of Transcriptional Profiling Data Using Quadratic Programming with Application to Complex Clinical Blood Samples , 2011, PloS one.

[23]  Zhandong Liu,et al.  Gene expression deconvolution in linear space , 2011, Nature Methods.

[24]  Yi Zhong,et al.  Digital sorting of complex tissues for cell type-specific gene expression profiles , 2013, BMC Bioinformatics.

[25]  Mei Yu,et al.  PERT: A Method for Expression Deconvolution of Human Blood Samples from Varied Microenvironmental and Developmental Conditions , 2012, PLoS Comput. Biol..

[26]  Ting Gong,et al.  DeconRNASeq: a statistical framework for deconvolution of heterogeneous tissue samples based on mRNA-Seq data , 2013, Bioinform..

[27]  G. Getz,et al.  Inferring tumour purity and stromal and immune cell admixture from expression data , 2013, Nature Communications.

[28]  A. Palucka,et al.  Neutralizing Tumor-Promoting Chronic Inflammation: A Magic Bullet? , 2013, Science.

[29]  S. Shen-Orr,et al.  Computational deconvolution: extracting cell type-specific information from heterogeneous samples. , 2013, Current opinion in immunology.

[30]  Andrea J. Goldsmith,et al.  A Self-Directed Method for Cell-Type Identification and Separation of Gene Expression Microarrays , 2013, PLoS Comput. Biol..

[31]  Ash A. Alizadeh,et al.  Active idiotypic vaccination versus control immunotherapy for follicular lymphoma. , 2014, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[32]  Kun Huang,et al.  MMAD: microarray microdissection with analysis of differences is a computational tool for deconvoluting cell type-specific contributions from tissue samples , 2014, Bioinform..