Adjoint-Based Multi-Point and Multi-Objective Optimization of a Turbocharger Radial Turbine

This paper presents a gradient-based design optimization of a turbocharger radial turbine for automotive applications. The aim is to improve both the total-to-static efficiency and the moment of inertia of the turbine wheel. The search for the optimal designs is accomplished by a high-fidelity adjoint-based optimization framework using a fast sequential quadratic programming algorithm. The proposed method is able to produce improved Pareto-optimal designs in only a few iterations which are trade-offs between the two competing objectives. This is realized by redesigning the blade shape and the meridional flow channel for the respective target while satisfying imposed aerodynamic constraints. Furthermore, a comparative study with a stochastic evolutionary algorithm suggests that the gradient-based method has captured the global Pareto front at a computational cost which is about one order of magnitude lower.

[1]  J. N. Lyness,et al.  Numerical Differentiation of Analytic Functions , 1967 .

[2]  Joaquim R. R. A. Martins,et al.  On the influence of optimization algorithm and initial design on wing aerodynamic shape optimization , 2018 .

[3]  S. Shahpar,et al.  Adjoint optimisation of a high pressure turbine stage for a lean-burn combustion system , 2013 .

[4]  D. Zingg,et al.  Multimodality and Global Optimization in Aerodynamic Design , 2013 .

[5]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .

[6]  Fulvio Tonon,et al.  Explicit Exact Formulas for the 3-D Tetrahedron Inertia Tensor in Terms of its Vertex Coordinates , 2005 .

[7]  Ami Harten,et al.  Self adjusting grid methods for one-dimensional hyperbolic conservation laws☆ , 1983 .

[8]  D. I. Papadimitriou,et al.  Total pressure loss minimization in turbomachinery cascades using a new continuous adjoint formulation , 2007 .

[9]  Joe F. Thompson,et al.  Automatic numerical generation of body-fitted curvilinear coordinate system for field containing any number of arbitrary two-dimensional bodies , 1974 .

[10]  L. Müller,et al.  Adjoint-Based Optimization of Turbomachinery with Application to Axial and Radial Turbines , 2019 .

[11]  D. X. Wang,et al.  Adjoint Aerodynamic Design Optimization for Blades in Multistage Turbomachines—Part I: Methodology and Verification , 2010 .

[12]  Marcus Meyer,et al.  Stabilisation of discrete steady adjoint solvers , 2015, J. Comput. Phys..

[13]  D. Zingg,et al.  Investigation into Aerodynamic Shape Optimization of Planar and Nonplanar Wings , 2018 .

[14]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[15]  Michael A. Saunders,et al.  SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization , 2002, SIAM J. Optim..

[16]  Forrester T. Johnson,et al.  Modi cations and Clari cations for the Implementation of the Spalart-Allmaras Turbulence Model , 2011 .

[17]  Tom Verstraete,et al.  CAD-Based Adjoint Optimization of the Stresses in a Radial Turbine , 2017 .

[18]  P. Gill,et al.  Some theoretical properties of an augmented lagrangian merit function , 1986 .

[19]  T. Pulliam,et al.  A comparative evaluation of genetic and gradient-based algorithms applied to aerodynamic optimization , 2008 .

[20]  Perry L. Miller,et al.  BladeCAD: An Interactive Geometric Design Tool for Turbomachinery Blades , 1996 .

[21]  Thomas A. Reist,et al.  Drag Minimization Based on the Navier–Stokes Equations Using a Newton–Krylov Approach , 2015 .

[22]  Feng Liu,et al.  Turbine Blade Row Optimization Through Endwall Contouring by an Adjoint Method , 2015 .

[23]  V. Venkatakrishnan On the accuracy of limiters and convergence to steady state solutions , 1993 .

[24]  M. Giles,et al.  Algorithm Developments for Discrete Adjoint Methods , 2003 .

[25]  Sriram Shankaran,et al.  Development of Adjoint Solvers for Engineering Gradient-Based Turbomachinery Design Applications , 2009 .

[26]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[27]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .

[28]  Tom Verstraete,et al.  CAD Integrated Multipoint Adjoint-Based Optimization of a Turbocharger Radial Turbine , 2017 .

[29]  Antony Jameson,et al.  Aerodynamic design via control theory , 1988, J. Sci. Comput..

[30]  Joaquim R. R. A. Martins,et al.  The complex-step derivative approximation , 2003, TOMS.

[31]  O. Pironneau On optimum design in fluid mechanics , 1974 .

[32]  Beckett Yx Zhou,et al.  Airfoil Optimization Using Practical Aerodynamic Design Requirements , 2010 .

[33]  Siva Nadarajah,et al.  Optimum Shape Design for Multirow Turbomachinery Configurations Using a Discrete Adjoint Approach and an Efficient Radial Basis Function Deformation Scheme for Complex Multiblock Grids , 2015 .

[34]  John C. Vassberg,et al.  Development of a Common Research Model for Applied CFD Validation Studies , 2008 .

[35]  Fernando Gisbert,et al.  Profiled End Wall Design Using an Adjoint Navier–Stokes Solver , 2008 .

[36]  Von Karman,et al.  CADO : a Computer Aided Design and Optimization Tool for Turbomachinery Applications , 2010 .

[37]  William A. Crossley,et al.  Global Optimization Issues for Transonic Airfoil Design , 2002 .