Multivariable Al–Salam & Carlitz Polynomials Associated with the Type A q–Dunkl Kernel

The Al-Salam & Carlitz polynomials are $q$-generalizations of the classical Hermite polynomials. Multivariable generalizations of these polynomials are introduced via a generating function involving a multivariable hypergeometric function which is the $q$-analogue of the type-$A$ Dunkl integral kernel. An eigenoperator is established for these polynomials and this is used to prove orthogonality with respect to a certain Jackson integral inner product. This inner product is normalized by deriving a $q$-analogue of the Mehta integral, and the corresponding normalization of the multivariable Al-Salam & Carlitz polynomials is derived from a Pieri-type formula. Various other special properties of the polynomials are also presented, including their relationship to the shifted Macdonald polynomials and the big $q$-Jacobi polynomials.

[1]  Michel Lassalle,et al.  Coefficients binomiaux généralisés et polynômes de Macdonald , 1998 .

[2]  M. Rösler Generalized Hermite Polynomials and the Heat Equation for Dunkl Operators , 1998 .

[3]  S. Sahi The binomial formula for nonsymmetric Macdonald polynomials , 1997, q-alg/9703024.

[4]  P. Forrester,et al.  A q-analogue of the type A Dunkl operator and integral kernel , 1997, q-alg/9701039.

[5]  J. F. van Diejen Confluent Hypergeometric Orthogonal Polynomials Related to the Rational Quantum Calogero System with Harmonic Confinement , 1996, q-alg/9609032.

[6]  P. Forrester,et al.  The Calogero-Sutherland Model and Generalized Classical Polynomials , 1996, solv-int/9608004.

[7]  P. Forrester,et al.  Nonsymmetric Jack polynomials and integral kernels , 1996, q-alg/9612003.

[8]  A. Okounkov Binomial formula for Macdonald polynomials , 1996, q-alg/9608021.

[9]  F. Knop Symmetric and non-symmetric quantum Capelli polynomials , 1996, q-alg/9603028.

[10]  Jyoichi Kaneko $q$-Selberg integrals and Macdonald polynomials , 1996 .

[11]  Multivariable big and little q -Jacobi polynomials , 1997 .

[12]  R. Askey,et al.  Theq-harmonic oscillator and the Al-Salam and Carlitz polynomials , 1993, math/9307207.

[13]  Charles F. Dunkl,et al.  Hankel transforms associated to finite reflection groups , 1992 .

[14]  Charles F. Dunkl,et al.  Integral Kernels with Reflection Group Invariance , 1991, Canadian Journal of Mathematics.

[15]  I. Cherednik A unification of Knizhnik-Zamolodchikov and Dunkl operators via affine Hecke algebras , 1991 .

[16]  Kevin W. J. Kadell A proof of Askey's conjectured q-analogue of Selberg's integral and a conjecture of Morris , 1988 .

[17]  John R. Stembridge A short proof of macdonald's conjecture for the root systems of type a , 1988 .

[18]  Mourad E. H. Ismail,et al.  A queueing model and a set of orthogonal polynomials , 1985 .

[19]  I. G. MacDonald,et al.  Symmetric functions and Hall polynomials , 1979 .

[20]  Leonard Carlitz,et al.  Some Orthogonal q‐Polynomials , 1965 .