Response Transcription During Non-stress Mediator Phosphorylation Prevents Stress Gene Regulation :

[1]  Dror Baran,et al.  Conserved motifs in the Msn2-activating domain are important for Msn2-mediated yeast stress response , 2012, Journal of Cell Science.

[2]  Achim Tresch,et al.  Comparative dynamic transcriptome analysis (cDTA) reveals mutual feedback between mRNA synthesis and degradation , 2012, Genome research.

[3]  C. Grant,et al.  The Response to Heat Shock and Oxidative Stress in Saccharomyces cerevisiae , 2012, Genetics.

[4]  J. Benschop,et al.  Distinct role of Mediator tail module in regulation of SAGA‐dependent, TATA‐containing genes in yeast , 2012, The EMBO journal.

[5]  Steven Hahn,et al.  The Acidic Transcription Activator Gcn4 Binds the Mediator Subunit Gal11/med15 Using a Simple Protein Interface Forming a Fuzzy Complex , 2022 .

[6]  J. Söding,et al.  A Conserved GA Element in TATA-Less RNA Polymerase II Promoters , 2011, PloS one.

[7]  Masaru Tomita,et al.  Redox regulation in respiring Saccharomyces cerevisiae. , 2011, Biochimica et biophysica acta.

[8]  David O. Morgan,et al.  Cascades of multisite phosphorylation control Sic1 destruction at the onset of S phase , 2011, Nature.

[9]  D. Rubinsztein,et al.  Autophagy and Aging , 2011, Cell.

[10]  N. Kim,et al.  Mediator and human disease. , 2011, Seminars in cell & developmental biology.

[11]  M. Mann,et al.  Quantitative, high-resolution proteomics for data-driven systems biology. , 2011, Annual review of biochemistry.

[12]  Sebastian Bauer,et al.  Model-based gene set analysis for Bioconductor , 2011, Bioinform..

[13]  Ana Maria Cuervo,et al.  Autophagy in the cellular energetic balance. , 2011, Cell metabolism.

[14]  M. Mann,et al.  System-Wide Temporal Characterization of the Proteome and Phosphoproteome of Human Embryonic Stem Cell Differentiation , 2011, Science Signaling.

[15]  Achim Tresch,et al.  Dynamic transcriptome analysis measures rates of mRNA synthesis and decay in yeast , 2011, Molecular systems biology.

[16]  陈奕欣 Ongoing and future developments at the Universal Protein Resource , 2011 .

[17]  Edward L. Huttlin,et al.  A Tissue-Specific Atlas of Mouse Protein Phosphorylation and Expression , 2010, Cell.

[18]  Sohail Malik,et al.  The metazoan Mediator co-activator complex as an integrative hub for transcriptional regulation , 2010, Nature Reviews Genetics.

[19]  Johannes Buchner,et al.  Hsp12 is an intrinsically unstructured stress protein that folds upon membrane association and modulates membrane function. , 2010, Molecular cell.

[20]  John J Tyson,et al.  A model of yeast cell-cycle regulation based on multisite phosphorylation , 2010, Molecular systems biology.

[21]  S. Hahn,et al.  Mechanism of Mediator Recruitment by Tandem Gcn4 Activation Domains and Three Gal11 Activator-Binding Domains , 2010, Molecular and Cellular Biology.

[22]  S. Brunak,et al.  Quantitative Phosphoproteomics Reveals Widespread Full Phosphorylation Site Occupancy During Mitosis , 2010, Science Signaling.

[23]  A. Hinnebusch,et al.  Activator Gcn4 Employs Multiple Segments of Med15/Gal11, Including the KIX Domain, to Recruit Mediator to Target Genes in Vivo*♦ , 2009, The Journal of Biological Chemistry.

[24]  Jesper V Olsen,et al.  Global analysis of the yeast osmotic stress response by quantitative proteomics. , 2009, Molecular bioSystems.

[25]  S. Gygi,et al.  Global Analysis of Cdk1 Substrate Phosphorylation Sites Provides Insights into Evolution , 2009, Science.

[26]  J. Gunawardena,et al.  Unlimited multistability in multisite phosphorylation systems , 2009, Nature.

[27]  Joaquín Moreno,et al.  Specific and global regulation of mRNA stability during osmotic stress in Saccharomyces cerevisiae. , 2009, RNA.

[28]  Y. Huang,et al.  Mediator MED23 links insulin signaling to the adipogenesis transcription cascade. , 2009, Developmental cell.

[29]  Peter B. McGarvey,et al.  Infrastructure for the life sciences: design and implementation of the UniProt website , 2009, BMC Bioinformatics.

[30]  F. Asturias,et al.  Mediator structural conservation and implications for the regulation mechanism. , 2009, Structure.

[31]  O. Nerman,et al.  mRNA stability changes precede changes in steady-state mRNA amounts during hyperosmotic stress. , 2009, RNA.

[32]  M. Mann,et al.  Global and site-specific quantitative phosphoproteomics: principles and applications. , 2009, Annual review of pharmacology and toxicology.

[33]  Ricard Solé,et al.  Dynamic Signaling in the Hog1 MAPK Pathway Relies on High Basal Signal Transduction , 2009, Science Signaling.

[34]  Fajun Yang,et al.  Mediator Subunit Gal11p/MED15 Is Required for Fatty Acid-dependent Gene Activation by Yeast Transcription Factor Oaf1p* , 2009, Journal of Biological Chemistry.

[35]  Jürgen Cox,et al.  A practical guide to the MaxQuant computational platform for SILAC-based quantitative proteomics , 2009, Nature Protocols.

[36]  M. Mann,et al.  MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification , 2008, Nature Biotechnology.

[37]  Yoav Arava,et al.  Yeast translational response to high salinity: global analysis reveals regulation at multiple levels. , 2008, RNA.

[38]  J. Fondell,et al.  MED1 Phosphorylation Promotes Its Association with Mediator: Implications for Nuclear Receptor Signaling , 2008, Molecular and Cellular Biology.

[39]  K. Struhl,et al.  A nuclear receptor-like pathway regulating multidrug resistance in fungi , 2008, Nature.

[40]  Patrick Cramer,et al.  Structure-system correlation identifies a gene regulatory Mediator submodule. , 2008, Genes & development.

[41]  J. García,et al.  Functional and quantitative proteomics using SILAC in cancer research , 2008 .

[42]  K. Resing,et al.  Mapping protein post-translational modifications with mass spectrometry , 2007, Nature Methods.

[43]  Marcus B Smolka,et al.  Proteome-wide identification of in vivo targets of DNA damage checkpoint kinases , 2007, Proceedings of the National Academy of Sciences.

[44]  Lewis Y. Geer,et al.  Analysis of phosphorylation sites on proteins from Saccharomyces cerevisiae by electron transfer dissociation (ETD) mass spectrometry , 2007, Proceedings of the National Academy of Sciences.

[45]  Scott A Gerber,et al.  Large-scale phosphorylation analysis of alpha-factor-arrested Saccharomyces cerevisiae. , 2007, Journal of proteome research.

[46]  M. Mann,et al.  Global, In Vivo, and Site-Specific Phosphorylation Dynamics in Signaling Networks , 2006, Cell.

[47]  M. Jacquet,et al.  Role of Gal11, a component of the RNA polymerase II mediator in stress‐induced hyperphosphorylation of Msn2 in Saccharomyces cerevisiae , 2006, Molecular microbiology.

[48]  Thessa T. J. P. Kockelkorn,et al.  Mediator expression profiling epistasis reveals a signal transduction pathway with antagonistic submodules and highly specific downstream targets. , 2005, Molecular cell.

[49]  P. Roepstorff,et al.  Highly Selective Enrichment of Phosphorylated Peptides from Peptide Mixtures Using Titanium Dioxide Microcolumns* , 2005, Molecular & Cellular Proteomics.

[50]  C. Gustafsson,et al.  The yeast Mediator complex and its regulation. , 2005, Trends in biochemical sciences.

[51]  H. Handa,et al.  Mediator requirement for both recruitment and postrecruitment steps in transcription initiation. , 2005, Molecular cell.

[52]  M. Mann,et al.  Quantitative Phosphoproteomics Applied to the Yeast Pheromone Signaling Pathway*S , 2005, Molecular & Cellular Proteomics.

[53]  M. Hall,et al.  TOR Regulates Ribosomal Protein Gene Expression via PKA and the Forkhead Transcription Factor FHL1 , 2004, Cell.

[54]  Josep Clotet,et al.  Hog1 mediates cell-cycle arrest in G1 phase by the dual targeting of Sic1 , 2004, Nature Cell Biology.

[55]  Kevin Struhl,et al.  MAP Kinase-Mediated Stress Relief that Precedes and Regulates the Timing of Transcriptional Induction , 2004, Cell.

[56]  Paul Tempst,et al.  Mutual Targeting of Mediator and the TFIIH Kinase Kin28* , 2004, Journal of Biological Chemistry.

[57]  Ya-Wen Chang,et al.  The Ras/PKA signaling pathway directly targets the Srb9 protein, a component of the general RNA polymerase II transcription apparatus. , 2004, Molecular cell.

[58]  J. François,et al.  Combinatorial control by the protein kinases PKA, PHO85 and SNF1 of transcriptional induction of the Saccharomyces cerevisiae GSY2 gene at the diauxic shift , 2004, Molecular Genetics and Genomics.

[59]  C. Gustafsson,et al.  Site-specific Srb10-dependent phosphorylation of the yeast Mediator subunit Med2 regulates gene expression from the 2-microm plasmid. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[60]  Y. Liu,et al.  Two Cyclin-Dependent Kinases Promote RNA Polymerase II Transcription and Formation of the Scaffold Complex , 2004, Molecular and Cellular Biology.

[61]  I. Unnikrishnan,et al.  Multiple Positive and Negative Elements Involved in the Regulation of Expression of GSY1 in Saccharomyces cerevisiae* , 2003, Journal of Biological Chemistry.

[62]  M. Mann,et al.  Properties of 13C-substituted arginine in stable isotope labeling by amino acids in cell culture (SILAC). , 2003, Journal of proteome research.

[63]  平田 雄三,et al.  Yeast glycogen synthase kinase-3 activates Msn2p-dependent transcription of stress responsive genes , 2003 .

[64]  Lea Sistonen,et al.  Multisite phosphorylation provides sophisticated regulation of transcription factors. , 2002, Trends in biochemical sciences.

[65]  M. Mann,et al.  Stable Isotope Labeling by Amino Acids in Cell Culture, SILAC, as a Simple and Accurate Approach to Expression Proteomics* , 2002, Molecular & Cellular Proteomics.

[66]  Margaret Werner-Washburne,et al.  The genomics of yeast responses to environmental stress and starvation , 2002, Functional & Integrative Genomics.

[67]  Krishnamurthy Natarajan,et al.  Gcn4p, a Master Regulator of Gene Expression, Is Controlled at Multiple Levels by Diverse Signals of Starvation and Stress , 2002, Eukaryotic Cell.

[68]  C. J. Jeong,et al.  Evidence that Gal11 protein is a target of the Gal4 activation domain in the mediator. , 2001, Biochemistry.

[69]  B. Séraphin,et al.  The tandem affinity purification (TAP) method: a general procedure of protein complex purification. , 2001, Methods.

[70]  Gerhard K. H. Przemeck,et al.  Isolation and characterization of a novel gene from the DiGeorge chromosomal region that encodes for a mediator subunit. , 2001, Genomics.

[71]  E. Lander,et al.  Remodeling of yeast genome expression in response to environmental changes. , 2001, Molecular biology of the cell.

[72]  M. Tyers,et al.  Regulation of cell cycle progression by Swe1p and Hog1p following hypertonic stress. , 2001, Molecular biology of the cell.

[73]  J. Park,et al.  In Vivo Requirement of Activator-Specific Binding Targets of Mediator , 2000, Molecular and Cellular Biology.

[74]  J. Thevelein,et al.  Induction of neutral trehalase Nth1 by heat and osmotic stress is controlled by STRE elements and Msn2/Msn4 transcription factors: variations of PKA effect during stress and growth , 2000, Molecular microbiology.

[75]  B. Séraphin,et al.  A generic protein purification method for protein complex characterization and proteome exploration , 1999, Nature Biotechnology.

[76]  Paul Tempst,et al.  Ligand-dependent transcription activation by nuclear receptors requires the DRIP complex , 1999, Nature.

[77]  K. McEntee,et al.  Functional analysis of the stress response element and its role in the multistress response of Saccharomyces cerevisiae. , 1998, Biochemical and biophysical research communications.

[78]  T. Mcclanahan,et al.  Structure and functional analysis of the multistress response gene DDR2 from Saccharomyces cerevisiae. , 1996, Biochemical and biophysical research communications.

[79]  Roger D. Kornberg,et al.  A mediator required for activation of RNA polymerase II transcription in vitro , 1991, Nature.

[80]  Roger D. Kornberg,et al.  A novel mediator between activator proteins and the RNA polymerase II transcription apparatus , 1990, Cell.

[81]  R. Sikorski,et al.  A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. , 1989, Genetics.

[82]  D. Koshland,et al.  Inactivation of isocitrate dehydrogenase by phosphorylation is mediated by the negative charge of the phosphate. , 1987, The Journal of biological chemistry.