Concurrent improvement in optical and electrical characteristics by using inverted pyramidal array structures toward efficient Si heterojunction solar cells

Abstract The Si heterojunction (SHJ) solar cell is presently the most popular design in the crystalline Si ( c -Si) photovoltaics due to the high open-circuit voltages ( V OC ). Photon management by surface structuring techniques to control the light entering the devices is critical for boosting cell efficiency although it usually comes with the V OC loss caused by severe surface recombination. For the first time, the periodic inverted pyramid (IP) structure fabricated by photolithography and anisotropic etching processes was employed for SHJ solar cells, demonstrating concurrent improvement in optical and electrical characteristics (i.e., short-circuit current density ( J SC ) and V OC ). Periodic IP structures show superior light-harvesting properties as most of the incident rays bounce three times on the walls of the IPs but only twice between conventional random upright pyramids (UPs). The high minority carrier lifetime of the IP structures after a -Si:H passivation results in an enhanced V OC by 28 mV, showing improved carrier collection efficiency due to the superior passivation of the IP structure over the random UP structures. The superior antireflective (AR) ability and passivation results demonstrate that the IP structure has the potential to replace conventional UP structures to further boost the efficiency in solar cell applications.

[1]  Zhang Yu,et al.  Effect of chemical polish etching and post annealing on the performance of silicon heterojunction solar cells , 2009 .

[2]  Naoteru Matsubara,et al.  Achievement of More Than 25% Conversion Efficiency With Crystalline Silicon Heterojunction Solar Cell , 2014, IEEE Journal of Photovoltaics.

[3]  Martin A. Green,et al.  Characterization of 2-D reflection pattern from textured front surfaces of silicon solar cells , 2013 .

[4]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[5]  Jr-hau He,et al.  Toward efficient and omnidirectional n-type Si solar cells: concurrent improvement in optical and electrical characteristics by employing microscale hierarchical structures. , 2014, ACS nano.

[6]  L. Korte,et al.  Physics and Technology of Amorphous-Crystalline Heterostructure Silicon Solar Cells , 2012 .

[7]  R. Tscharner,et al.  Photovoltaic technology: the case for thin-film solar cells , 1999, Science.

[8]  A. Rohatgi,et al.  Ray tracing analysis of the inverted pyramid texturing geometry for high efficiency silicon solar cells , 1993 .

[9]  Jr-hau He,et al.  Above-11%-efficiency organic-inorganic hybrid solar cells with omnidirectional harvesting characteristics by employing hierarchical photon-trapping structures. , 2013, Nano letters.

[10]  Rita Rizzoli,et al.  An optimized texturing process for silicon solar cell substrates using TMAH , 2005 .

[11]  H. Angermann,et al.  Wet-chemical passivation of Si(111)- and Si(100)-substrates , 2000 .

[12]  Chih-Hsiung Huang,et al.  Realizing high-efficiency omnidirectional n-type Si solar cells via the hierarchical architecture concept with radial junctions. , 2013, ACS nano.

[13]  C. Ballif,et al.  High-efficiency Silicon Heterojunction Solar Cells: A Review , 2012 .

[14]  Martin A. Green,et al.  Twenty‐four percent efficient silicon solar cells with double layer antireflection coatings and reduced resistance loss , 1995 .

[15]  J. Noh,et al.  Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors , 2013, Nature Photonics.

[16]  M. Schmidt,et al.  Efficient silicon heterojunction solar cells based on p‐ and n‐type substrates processed at temperatures < 220°C , 2006 .

[17]  M. Yamaguchi,et al.  Light trapping effect of submicron surface textures in crystalline Si solar cells , 2007 .

[18]  Hao-Chih Yuan,et al.  An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures. , 2012, Nature nanotechnology.

[19]  L. Korte,et al.  Passivation of Textured Silicon Wafers:Influence of Pyramid Size Distribution, a-Si:H Deposition Temperature, and Post-treatment , 2013 .

[20]  D. Macdonald,et al.  Measuring and interpreting the lifetime of silicon wafers , 2004 .

[21]  M. Green,et al.  19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells , 1998 .

[22]  L. Korte,et al.  Optimisation of electronic interface properties of a-Si:H/c-Si hetero-junction solar cells by wet-chemical surface pre-treatment , 2008 .

[23]  Mark S. Lundstrom,et al.  Thin‐Film Solar Cells with InP Absorber Layers Directly Grown on Nonepitaxial Metal Substrates , 2015 .

[24]  M. Taguchi,et al.  24.7% Record Efficiency HIT Solar Cell on Thin Silicon Wafer , 2013, IEEE Journal of Photovoltaics.

[25]  U. Das,et al.  Effect of texturing and surface preparation on lifetime and cell performance in heterojunction silicon solar cells , 2008 .

[26]  J. Sturm,et al.  Role of Majority and Minority Carrier Barriers Silicon/Organic Hybrid Heterojunction Solar Cells , 2011, Advanced materials.

[27]  Andrew G. Glen,et al.  APPL , 2001 .

[28]  Hung-Chih Chang,et al.  Photon management in nanostructured solar cells , 2014 .

[29]  Peidong Yang,et al.  Light trapping in silicon nanowire solar cells. , 2010, Nano letters.

[30]  D. Tsai,et al.  Monolayer MoS2 heterojunction solar cells. , 2014, ACS nano.

[31]  Tzu-Ching Lin,et al.  A simple and low-cost technique for silicon nanowire arrays based solar cells , 2012 .

[32]  Lawrence L. Kazmerski,et al.  Photovoltaics: A review of cell and module technologies , 1997 .

[33]  E. Forniés,et al.  Control of random texture of monocrystalline silicon cells by angle-resolved optical reflectance , 2005 .

[34]  R. Sinton,et al.  Contactless determination of current–voltage characteristics and minority‐carrier lifetimes in semiconductors from quasi‐steady‐state photoconductance data , 1996 .

[35]  Martin A. Green,et al.  Optimized antireflection coatings for high-efficiency silicon solar cells , 1991 .