Detailed Analysis of a Contiguous 22-Mb Region of the Maize Genome

Most of our understanding of plant genome structure and evolution has come from the careful annotation of small (e.g., 100 kb) sequenced genomic regions or from automated annotation of complete genome sequences. Here, we sequenced and carefully annotated a contiguous 22 Mb region of maize chromosome 4 using an improved pseudomolecule for annotation. The sequence segment was comprehensively ordered, oriented, and confirmed using the maize optical map. Nearly 84% of the sequence is composed of transposable elements (TEs) that are mostly nested within each other, of which most families are low-copy. We identified 544 gene models using multiple levels of evidence, as well as five miRNA genes. Gene fragments, many captured by TEs, are prevalent within this region. Elimination of gene redundancy from a tetraploid maize ancestor that originated a few million years ago is responsible in this region for most disruptions of synteny with sorghum and rice. Consistent with other sub-genomic analyses in maize, small RNA mapping showed that many small RNAs match TEs and that most TEs match small RNAs. These results, performed on ∼1% of the maize genome, demonstrate the feasibility of refining the B73 RefGen_v1 genome assembly by incorporating optical map, high-resolution genetic map, and comparative genomic data sets. Such improvements, along with those of gene and repeat annotation, will serve to promote future functional genomic and phylogenomic research in maize and other grasses.

David C. Schwartz | Srinivas Aluru | Patrick S. Schnable | Cristian Chaparro | William Courtney | Dawn H. Nagel | Yeisoo Yu | Rod A. Wing | Doreen Ware | Robert A. Martienssen | Joshua C. Stein | Blake C. Meyers | Shiguo Zhou | W. Richard McCombie | Chengzhi Liang | Ning Jiang | Cheng-Ting Yeh | Lixing Yang | Pamela J. Green | Apurva Narechania | Ananth Kalyanaraman | Sandra W. Clifton | Melissa Kramer | Susan R. Wessler | T. Graves | R. Wilson | S. Rock | R. Fulton | L. Fulton | J. Bennetzen | S. Wessler | W. Courtney | S. Pasternak | D. Schwartz | Cheng-Ting Yeh | P. Schnable | S. Clifton | C. Fronick | W. McCombie | R. Martienssen | A. Narechania | S. Zhou | S. Aluru | R. Wing | Yeisoo Yu | Yujun Han | Hyeran Kim | J. Stein | D. Ware | D. Kudrna | Lixing Yang | L. Courtney | B. Meyers | F. Wei | A. Kalyanaraman | Chengzhi Liang | N. Jiang | Jianwei Zhang | Scott S. Kruchowski | K. Collura | J. Currie | A. Angelova | Gabriel Scara | Marina Wissotski | W. Golser | Jinke Lin | M. Kramer | L. Spiegel | Kai Ying | R. Baucom | C. Chaparro | J. Deragon | Lifang Zhang | P. Green | Richard K. Wilson | Emanuele De Paoli | Jeffrey L. Bennetzen | Fusheng Wei | Tina A. Graves | E. De Paoli | Lucinda A. Fulton | Wolfgang Golser | Marina Wissotski | HyeRan Kim | Lifang Zhang | Jean-Marc Deragon | Regina S. Baucom | Robert S. Fulton | Yujun Han | Jianwei Zhang | Catrina Fronick | Kristi Collura | Kai Ying | Shiran Pasternak | David Kudrna | Jennifer Currie | Jinke Lin | Angelina Angelova | Gabriel Scara | Laura Courtney | Scott Kruchowski | Susan M. Rock | Stephanie Adams | Lori Spiegel | Lydia Nascimento | Phillip San Miguel | P. S. Miguel | S. Adams | L. Nascimento | Ning Jiang | Shiguo Zhou | L. Nascimento | C. Yeh | R. Wilson | Fusheng Wei

[1]  L. Holm,et al.  The Pfam protein families database , 2005, Nucleic Acids Res..

[2]  Sanzhen Liu,et al.  DLA-Based Strategies for Cloning Insertion Mutants: Cloning the gl4 Locus of Maize Using Mu Transposon Tagged Alleles , 2009, Genetics.

[3]  Robert J. Elshire,et al.  A First-Generation Haplotype Map of Maize , 2009, Science.

[4]  Dawn H. Nagel,et al.  The B73 Maize Genome: Complexity, Diversity, and Dynamics , 2009, Science.

[5]  Katherine E. Guill,et al.  A Genome-Wide Characterization of MicroRNA Genes in Maize , 2009, PLoS genetics.

[6]  P. Schnable,et al.  Loss of RNA–Dependent RNA Polymerase 2 (RDR2) Function Causes Widespread and Unexpected Changes in the Expression of Transposons, Genes, and 24-nt Small RNAs , 2009, PLoS genetics.

[7]  T. Graves,et al.  The Physical and Genetic Framework of the Maize B73 Genome , 2009, PLoS genetics.

[8]  Cristian Chaparro,et al.  Exceptional Diversity, Non-Random Distribution, and Rapid Evolution of Retroelements in the B73 Maize Genome , 2009, PLoS genetics.

[9]  David C. Schwartz,et al.  A Single Molecule Scaffold for the Maize Genome , 2009, PLoS genetics.

[10]  Carol Soderlund,et al.  Sequencing, Mapping, and Analysis of 27,455 Maize Full-Length cDNAs , 2009, PLoS genetics.

[11]  Patrick S. Schnable,et al.  Maize Inbreds Exhibit High Levels of Copy Number Variation (CNV) and Presence/Absence Variation (PAV) in Genome Content , 2009, PLoS genetics.

[12]  L. Stein,et al.  Evidence-based gene predictions in plant genomes. , 2009, Genome research.

[13]  J. Bennetzen,et al.  Structure-based discovery and description of plant and animal Helitrons , 2009, Proceedings of the National Academy of Sciences.

[14]  X. Liu,et al.  Genome-Wide and Organ-Specific Landscapes of Epigenetic Modifications and Their Relationships to mRNA and Small RNA Transcriptomes in Maize[W] , 2009, The Plant Cell Online.

[15]  Jianbing Yan,et al.  Identification and characterization of CACTA transposable elements capturing gene fragments in maize , 2009 .

[16]  Mihaela M. Martis,et al.  The Sorghum bicolor genome and the diversification of grasses , 2009, Nature.

[17]  E. Birney,et al.  Pfam: the protein families database , 2013, Nucleic Acids Res..

[18]  S. Kurtz,et al.  A new method to compute K-mer frequencies and its application to annotate large repetitive plant genomes , 2008, BMC Genomics.

[19]  J. Bouck,et al.  Insights into corn genes derived from large-scale cDNA sequencing , 2008, Plant Molecular Biology.

[20]  Kan Nobuta,et al.  Distinct size distribution of endogenous siRNAs in maize: Evidence from deep sequencing in the mop1-1 mutant , 2008, Proceedings of the National Academy of Sciences.

[21]  Yun Ding,et al.  On the origin of new genes in Drosophila. , 2008, Genome research.

[22]  Daniel F Voytas,et al.  Chromodomains direct integration of retrotransposons to heterochromatin. , 2008, Genome research.

[23]  J. Bennetzen,et al.  A GeneTrek analysis of the maize genome , 2007, Proceedings of the National Academy of Sciences.

[24]  Steven G. Schroeder,et al.  Physical and Genetic Structure of the Maize Genome Reflects Its Complex Evolutionary History , 2007, PLoS genetics.

[25]  R. Martienssen,et al.  Transposable elements and the epigenetic regulation of the genome , 2007, Nature Reviews Genetics.

[26]  Li Yang,et al.  MIPSPlantsDB—plant database resource for integrative and comparative plant genome research , 2007, Nucleic Acids Res..

[27]  John A. Hamilton,et al.  The TIGR Rice Genome Annotation Resource: improvements and new features , 2006, Nucleic Acids Res..

[28]  B. Kronmiller,et al.  TE nest: Automated chronological annotation and visualization of nested plant transposable elements , 2007 .

[29]  J. Bennetzen,et al.  Analysis of retrotransposon structural diversity uncovers properties and propensities in angiosperm genome evolution , 2006, Proceedings of the National Academy of Sciences.

[30]  Agnes P Chan,et al.  Uneven chromosome contraction and expansion in the maize genome. , 2006, Genome research.

[31]  M. Freeling,et al.  Initiation, Establishment, and Maintenance of Heritable MuDR Transposon Silencing in Maize Are Mediated by Distinct Factors , 2006, PLoS biology.

[32]  C. Soderlund,et al.  SyMAP: A system for discovering and viewing syntenic regions of FPC maps. , 2006, Genome research.

[33]  J. Volff Turning junk into gold: domestication of transposable elements and the creation of new genes in eukaryotes , 2006, BioEssays : news and reviews in molecular, cellular and developmental biology.

[34]  Joshua P. White,et al.  An RNA-dependent RNA polymerase is required for paramutation in maize , 2006, Nature.

[35]  Srinivas Aluru,et al.  Efficient algorithms and software for detection of full-length LTR retrotransposons , 2006, 2005 IEEE Computational Systems Bioinformatics Conference (CSB'05).

[36]  B. Birren,et al.  Structure and Architecture of the Maize Genome1[W] , 2005, Plant Physiology.

[37]  L. Vodkin,et al.  The wp Mutation of Glycine max Carries a Gene-Fragment-Rich Transposon of the CACTA Superfamilyw⃞ , 2005, The Plant Cell Online.

[38]  Takuji Sasaki,et al.  The map-based sequence of the rice genome , 2005, Nature.

[39]  李佩芳 International Rice Genome Sequencing Project. 2005. The map-based sequence of the rice genome. , 2005 .

[40]  M. Morgante,et al.  Gene duplication and exon shuffling by helitron-like transposons generate intraspecies diversity in maize , 2005, Nature Genetics.

[41]  Mark Borodovsky,et al.  GeneMark: web software for gene finding in prokaryotes, eukaryotes and viruses , 2005, Nucleic Acids Res..

[42]  J. Bennetzen,et al.  Mechanisms of recent genome size variation in flowering plants. , 2005, Annals of botany.

[43]  Jianxin Ma,et al.  Consistent over-estimation of gene number in complex plant genomes. , 2004, Current opinion in plant biology.

[44]  Gi-Ho Sung,et al.  Evolution of microRNA genes by inverted duplication of target gene sequences in Arabidopsis thaliana , 2004, Nature Genetics.

[45]  R. Wing,et al.  Sequence composition and genome organization of maize. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[46]  Jianxin Ma,et al.  Close split of sorghum and maize genome progenitors. , 2004, Genome research.

[47]  J. Bennetzen,et al.  Gene loss and movement in the maize genome. , 2004, Genome research.

[48]  Sean R. Eddy,et al.  Pack-MULE transposable elements mediate gene evolution in plants , 2004, Nature.

[49]  A. Paterson,et al.  Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[50]  Jianxin Ma,et al.  Analyses of LTR-retrotransposon structures reveal recent and rapid genomic DNA loss in rice. , 2004, Genome research.

[51]  T. Andrews,et al.  The Ensembl automatic gene annotation system. , 2004, Genome research.

[52]  Michael Lee,et al.  Comparative mapping in F2∶3 and F6∶7 generations of quantitative trait loci for grain yield and yield components in maize , 1996, Theoretical and Applied Genetics.

[53]  T. Rocheford,et al.  Quantitative trait loci influencing protein and starch concentration in the Illinois Long Term Selection maize strains , 1993, Theoretical and Applied Genetics.

[54]  D. Grant,et al.  Quantitative trait loci for plant height in four maize populations and their associations with qualitative genetic loci , 1991, Theoretical and Applied Genetics.

[55]  J Quackenbush,et al.  Enrichment of Gene-Coding Sequences in Maize by Genome Filtration , 2003, Science.

[56]  R. Martienssen,et al.  Maintenance of heterochromatin by RNA interference of tandem repeats , 2003, Nature Genetics.

[57]  J. Bennetzen,et al.  A complex history of rearrangement in an orthologous region of the maize, sorghum, and rice genomes , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[58]  D. Haussler,et al.  Evolution's cauldron: Duplication, deletion, and rearrangement in the mouse and human genomes , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[59]  Klaas Vandepoele,et al.  Evidence That Rice and Other Cereals Are Ancient Aneuploids Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tpc.014019. , 2003, The Plant Cell Online.

[60]  John F. McDonald,et al.  LTR_STRUC: a novel search and identification program for LTR retrotransposons , 2003, Bioinform..

[61]  D. Ashlock,et al.  Alternative transcription initiation sites and polyadenylation sites are recruited during Mu suppression at the rf2a locus of maize. , 2003, Genetics.

[62]  D. Haussler,et al.  Human-mouse alignments with BLASTZ. , 2003, Genome research.

[63]  E. Birney,et al.  Apollo: a sequence annotation editor , 2002, Genome Biology.

[64]  P. Schnable,et al.  Functional Specialization of Maize Mitochondrial Aldehyde Dehydrogenases1 , 2002, Plant Physiology.

[65]  J. Bennetzen,et al.  Different types and rates of genome evolution detected by comparative sequence analysis of orthologous segments from four cereal genomes. , 2002, Genetics.

[66]  Matthew R. Pocock,et al.  The Bioperl toolkit: Perl modules for the life sciences. , 2002, Genome research.

[67]  R. Wing,et al.  Genome Dynamics and Evolution of the Mla (Powdery Mildew) Resistance Locus in Barley Online version contains Web-only data. Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tpc.002238. , 2002, The Plant Cell Online.

[68]  James K. M. Brown,et al.  Genome size reduction through illegitimate recombination counteracts genome expansion in Arabidopsis. , 2002, Genome research.

[69]  H. Fu,et al.  Intraspecific violation of genetic colinearity and its implications in maize , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[70]  Jianxin Ma,et al.  Genomic sequencing reveals gene content, genomic organization, and recombination relationships in barley , 2002, Functional & Integrative Genomics.

[71]  P. Schnable,et al.  Molecular characterization of meiotic recombination across the 140-kb multigenic a1-sh2 interval of maize , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[72]  V. Chandler,et al.  A mutation that prevents paramutation in maize also reverses Mutator transposon methylation and silencing , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[73]  H. Fu,et al.  Recombination rates between adjacent genic and retrotransposon regions in maize vary by 2 orders of magnitude , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[74]  M. Morgante,et al.  Abundance, distribution, and transcriptional activity of repetitive elements in the maize genome. , 2001, Genome research.

[75]  J. Jurka,et al.  Rolling-circle transposons in eukaryotes , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[76]  T. Wicker,et al.  Analysis of a contiguous 211 kb sequence in diploid wheat (Triticum monococcum L.) reveals multiple mechanisms of genome evolution. , 2001, The Plant journal : for cell and molecular biology.

[77]  B. Gaut Patterns of chromosomal duplication in maize and their implications for comparative maps of the grasses. , 2001, Genome research.

[78]  The Arabidopsis Genome Initiative Analysis of the genome sequence of the flowering plant Arabidopsis thaliana , 2000, Nature.

[79]  C. Soderlund,et al.  Contigs built with fingerprints, markers, and FPC V4.7. , 2000, Genome research.

[80]  J. Bennetzen Comparative Sequence Analysis of Plant Nuclear Genomes: Microcolinearity and Its Many Exceptions , 2000, Plant Cell.

[81]  V. Solovyev,et al.  Ab initio gene finding in Drosophila genomic DNA. , 2000, Genome research.

[82]  Eugen C. Buehler,et al.  Sequence and analysis of chromosome 2 of the plant Arabidopsis thaliana , 1999, Nature.

[83]  S. Mccouch,et al.  Inferences on the genome structure of progenitor maize through comparative analysis of rice, maize and the domesticated panicoids. , 1999, Genetics.

[84]  J. Bennetzen,et al.  Colinearity and its exceptions in orthologous adh regions of maize and sorghum. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[85]  T. Eickbush,et al.  Modular Evolution of the Integrase Domain in the Ty3/Gypsy Class of LTR Retrotransposons , 1999, Journal of Virology.

[86]  S. Iida,et al.  Capture of a genomic HMG domain sequence by the En/Spm-related transposable element Tpn1 in the Japanese morning glory , 1999, Molecular and General Genetics MGG.

[87]  Phillip SanMiguel,et al.  Evidence that a Recent Increase in Maize Genome Size was Caused by the Massive Amplification of Intergene Retrotransposons , 1998 .

[88]  A. Esen,et al.  Insertional polymorphism in introns 4 and 10 of the maize beta-glucosidase gene glu1. , 1998, Genome.

[89]  B. R. Wiseman,et al.  Maize Silk Maysin Concentration and Corn Earworm Antibiosis: QTLs and Genetic Mechanisms , 1998 .

[90]  Ronald L. Phillips,et al.  Relationships of cereal crops and other grasses , 1998 .

[91]  K. Devos,et al.  Comparative genetics in the grasses. , 1998, Plant molecular biology.

[92]  M. Bohn,et al.  QTL Mapping in Tropical Maize: II. Comparison of Genomic Regions for Resistance to Diatraea spp. , 1997 .

[93]  Ziheng Yang,et al.  PAML: a program package for phylogenetic analysis by maximum likelihood , 1997, Comput. Appl. Biosci..

[94]  B. Gaut,et al.  DNA sequence evidence for the segmental allotetraploid origin of maize. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[95]  J. Bennetzen,et al.  Microcolinearity in sh2-homologous regions of the maize, rice, and sorghum genomes. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[96]  J. Bennetzen,et al.  Nested Retrotransposons in the Intergenic Regions of the Maize Genome , 1996, Science.

[97]  M. Lee,et al.  Genetic resolution and verification of quantitative trait loci for flowering and plant height with recombinant inbred lines of maize. , 1996, Genome.

[98]  L. R. Veldboom,et al.  Genetic Mapping of Quantitative Trait Loci in Maize in Stress and Nonstress Environments: I. Grain Yield and Yield Components , 1996 .

[99]  J. Bennetzen,et al.  Characterization of four dispersed repetitive DNA sequences from Zea mays and their use in constructing contiguous DNA fragments using YAC clones. , 1996, Genome.

[100]  M. Bohn,et al.  QTL Mapping in Tropical Maize: I. Genomic Regions Affecting Leaf Feeding Resistance to Sugarcane Borer and Other Traits , 1996 .

[101]  Andrew H. Paterson,et al.  Convergent Domestication of Cereal Crops by Independent Mutations at Corresponding Genetic Loci , 1995, Science.

[102]  J. Thompson,et al.  CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. , 1994, Nucleic acids research.

[103]  J. Bennetzen,et al.  Integration and nonrandom mutation of a plasma membrane proton ATPase gene fragment within the Bs1 retroelement of maize. , 1994, The Plant cell.

[104]  T. Rocheford,et al.  Molecular Markers Associated with Maize Kernel Oil Concentration in an Illinois High Protein × Illinois Low Protein Cross , 1994 .

[105]  V. Walbot,et al.  The Maize Handbook , 1994, Springer Lab Manuals.

[106]  S. Tanksley,et al.  Comparative linkage maps of the rice and maize genomes. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[107]  D. Grant,et al.  Quantitative trait loci controlling resistance to gray leaf spot in maize. , 1993 .

[108]  J. Bennetzen,et al.  Genetic mapping and characterization of sorghum and related crops by means of maize DNA probes. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[109]  S. Rothstein,et al.  Molecular cloning of complementary DNA encoding maize nitrite reductase: molecular analysis and nitrate induction. , 1988, Plant physiology.

[110]  W. Fehr Genetic contributions to yield gains of five major crop plants : proceedings of a symposium sponsored by Division C-1 of the Crop Science Society of America, 2 December 1981, in Atlanta, Georgia , 1984 .

[111]  M. Kimura,et al.  Diffusion model of intergroup selection, with special reference to evolution of an altruistic character. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[112]  W. Gilbert Why genes in pieces? , 1978, Nature.

[113]  M. Kimura Evolutionary Rate at the Molecular Level , 1968, Nature.

[114]  B. Mcclintock Induction of Instability at Selected Loci in Maize. , 1953, Genetics.

[115]  B. Mcclintock Mutable Loci in Maize , 1951 .

[116]  H. B. Mann,et al.  On a Test of Whether one of Two Random Variables is Stochastically Larger than the Other , 1947 .