A scalable multigrid method for solving indefinite Helmholtz equations with constant wave numbers
暂无分享,去创建一个
[1] Marcus J. Grote,et al. Algebraic Multilevel Preconditioner for the Helmholtz Equation in Heterogeneous Media , 2009, SIAM J. Sci. Comput..
[2] Cornelis Vuik,et al. On a robust iterative method for heterogeneous helmholtz problems for geophysics applications , 2005 .
[3] Thomas A. Manteuffel,et al. First-Order System Least-Squares for the Helmholtz Equation , 1999, SIAM J. Sci. Comput..
[4] Dianne P. O'Leary,et al. A Multigrid Method Enhanced by Krylov Subspace Iteration for Discrete Helmholtz Equations , 2001, SIAM J. Sci. Comput..
[5] Cornelis Vuik,et al. A Novel Multigrid Based Preconditioner For Heterogeneous Helmholtz Problems , 2005, SIAM J. Sci. Comput..
[6] Scott P. MacLachlan,et al. A fast method for the solution of the Helmholtz equation , 2011, J. Comput. Phys..
[7] Cornelis Vuik,et al. On a Class of Preconditioners for Solving the Helmholtz Equation , 2003 .
[8] Achi Brandt,et al. Accuracy Properties of the Wave-Ray Multigrid Algorithm for Helmholtz Equations , 2006, SIAM J. Sci. Comput..
[9] Cornelis Vuik,et al. Comparison of multigrid and incomplete LU shifted-Laplace preconditioners for the inhomogeneous Helmholtz equation , 2006 .
[10] Irene Livshits. An algebraic multigrid wave-ray algorithm to solve eigenvalue problems for the helmholtz operator , 2004, Numer. Linear Algebra Appl..